""" Script to store FAISS and pickle files in Azure Cosmos DB MongoDB API This script should be run only once to upload the vector database files. run this at root of the project: python -m app.services.chatbot.vectorDB_upload_script """ import os import asyncio from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorGridFSBucket from datetime import datetime import logging from dotenv import load_dotenv # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Load environment variables from .env load_dotenv() # Database configuration MONGO_URI = os.getenv("MONGODB_KEY") DB_NAME = "SysmodelerDB" BUCKET_NAME = "vector_db" # File paths FAISS_PATH = r"c:\Users\User\Downloads\faiss_index_sysml\index.faiss" PICKLE_PATH = r"c:\Users\User\Downloads\faiss_index_sysml\index.pkl" class VectorDBUploader: def __init__(self): self.client = None self.db = None self.fs = None async def connect(self): """Connect to MongoDB""" try: self.client = AsyncIOMotorClient(MONGO_URI) self.db = self.client[DB_NAME] self.fs = AsyncIOMotorGridFSBucket(self.db, bucket_name=BUCKET_NAME) # Test connection await self.client.admin.command('ping') logger.info("Successfully connected to MongoDB") return True except Exception as e: logger.error(f"Failed to connect to MongoDB: {e}") return False async def file_exists(self, filename: str) -> bool: """Check if file already exists in GridFS""" try: async for file_doc in self.fs.find({"filename": filename}): return True return False except Exception as e: logger.error(f"Error checking file existence: {e}") return False # async def upload_file(self, file_path: str, filename: str) -> bool: # """Upload a file to GridFS""" # try: # # Check if file exists locally # if not os.path.exists(file_path): # logger.error(f"Local file not found: {file_path}") # return False # # Check if file already exists in database # if await self.file_exists(filename): # logger.warning(f"File {filename} already exists in database. Skipping...") # return True # # Get file size for logging # file_size = os.path.getsize(file_path) # logger.info(f"Uploading {filename} ({file_size} bytes)...") # # Upload file # with open(file_path, 'rb') as f: # file_id = await self.fs.upload_from_stream( # filename, # f, # metadata={ # "uploaded_at": datetime.utcnow(), # "original_path": file_path, # "file_size": file_size, # "description": f"Vector database file: {filename}" # } # ) # logger.info(f"Successfully uploaded {filename} with ID: {file_id}") # return True # except Exception as e: # logger.error(f"Failed to upload {filename}: {e}") # return False async def upload_file(self, file_path: str, filename: str) -> bool: """Upload a file to GridFS, overwriting any existing files with the same name""" try: # Check if file exists locally if not os.path.exists(file_path): logger.error(f"Local file not found: {file_path}") return False # Remove any existing file with the same name async for file_doc in self.fs.find({"filename": filename}): await self.fs.delete(file_doc._id) logger.info(f"Deleted existing file: {filename} (ID: {file_doc._id})") # Get file size for logging file_size = os.path.getsize(file_path) logger.info(f"Uploading {filename} ({file_size} bytes)...") # Upload file with open(file_path, 'rb') as f: file_id = await self.fs.upload_from_stream( filename, f, metadata={ "uploaded_at": datetime.utcnow(), "original_path": file_path, "file_size": file_size, "description": f"Vector database file: {filename}" } ) logger.info(f"Successfully uploaded {filename} with ID: {file_id}") return True except Exception as e: logger.error(f"Failed to upload {filename}: {e}") return False async def list_files(self): """List all files in the GridFS bucket""" try: logger.info(f"Files in {BUCKET_NAME} bucket:") async for file_doc in self.fs.find(): logger.info(f"- {file_doc.filename} (ID: {file_doc._id}, Size: {file_doc.length} bytes)") except Exception as e: logger.error(f"Failed to list files: {e}") async def upload_vector_files(self): """Upload both FAISS and pickle files""" files_to_upload = [ (FAISS_PATH, "index.faiss"), (PICKLE_PATH, "index.pkl") ] success_count = 0 for file_path, filename in files_to_upload: if await self.upload_file(file_path, filename): success_count += 1 else: logger.error(f"Failed to upload {filename}") logger.info(f"Upload completed: {success_count}/{len(files_to_upload)} files uploaded successfully") return success_count == len(files_to_upload) async def close(self): """Close database connection""" if self.client: self.client.close() logger.info("Database connection closed") async def main(): """Main function to upload vector database files""" uploader = VectorDBUploader() try: # Connect to database if not await uploader.connect(): logger.error("Failed to connect to database. Exiting...") return # Upload files logger.info("Starting vector database files upload...") success = await uploader.upload_vector_files() if success: logger.info("All files uploaded successfully!") else: logger.error("Some files failed to upload") # List all files in the bucket await uploader.list_files() except Exception as e: logger.error(f"Unexpected error: {e}") finally: await uploader.close() if __name__ == "__main__": print("Vector Database File Uploader") print("=" * 50) print(f"Database: {DB_NAME}") print(f"Bucket: {BUCKET_NAME}") print(f"FAISS file: {FAISS_PATH}") print(f"Pickle file: {PICKLE_PATH}") print("=" * 50) # Run the upload process asyncio.run(main())