Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ import warnings
|
|
3 |
import gradio as gr
|
4 |
from dotenv import load_dotenv
|
5 |
|
6 |
-
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
9 |
-
from
|
|
|
10 |
|
11 |
# Patch Gradio bug (schema parsing issue)
|
12 |
import gradio_client.utils
|
@@ -17,49 +17,56 @@ load_dotenv()
|
|
17 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
18 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
19 |
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
|
|
|
20 |
|
21 |
-
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT]):
|
22 |
raise ValueError("Azure OpenAI environment variables are missing.")
|
23 |
|
24 |
# Suppress warnings
|
25 |
warnings.filterwarnings("ignore")
|
26 |
|
27 |
-
# Initialize embedding model
|
28 |
-
embeddings = AzureOpenAIEmbeddings(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
|
36 |
# Load FAISS vector store
|
37 |
vectorstore = FAISS.load_local(
|
38 |
"faiss_index_sysml", embeddings, allow_dangerous_deserialization=True
|
39 |
)
|
40 |
|
41 |
-
# Initialize
|
42 |
-
|
43 |
-
|
44 |
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
45 |
-
|
46 |
-
openai_api_version="2024-08-01-preview",
|
47 |
-
temperature=0.5
|
48 |
-
)
|
49 |
-
|
50 |
-
# Build conversational chain with history
|
51 |
-
qa = ConversationalRetrievalChain.from_llm(
|
52 |
-
llm=llm,
|
53 |
-
retriever=vectorstore.as_retriever(),
|
54 |
-
return_source_documents=False
|
55 |
)
|
56 |
|
57 |
history = []
|
58 |
|
59 |
-
# Chatbot logic
|
60 |
def sysml_chatbot(message, history):
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
history.append((message, answer))
|
64 |
return "", history
|
65 |
|
|
|
3 |
import gradio as gr
|
4 |
from dotenv import load_dotenv
|
5 |
|
|
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from openai import AzureOpenAI
|
10 |
|
11 |
# Patch Gradio bug (schema parsing issue)
|
12 |
import gradio_client.utils
|
|
|
17 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
18 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
19 |
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
|
20 |
+
embeddings = OpenAIEmbeddings()
|
21 |
|
22 |
+
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, OPENAI_EMBEDDING]):
|
23 |
raise ValueError("Azure OpenAI environment variables are missing.")
|
24 |
|
25 |
# Suppress warnings
|
26 |
warnings.filterwarnings("ignore")
|
27 |
|
28 |
+
# Initialize embedding model
|
29 |
+
# embeddings = AzureOpenAIEmbeddings(
|
30 |
+
# azure_deployment=OPENAI_EMBEDDING,
|
31 |
+
# azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
32 |
+
# openai_api_key=AZURE_OPENAI_API_KEY,
|
33 |
+
# openai_api_version="2024-08-01-preview",
|
34 |
+
# chunk_size=1000
|
35 |
+
# )
|
36 |
|
37 |
# Load FAISS vector store
|
38 |
vectorstore = FAISS.load_local(
|
39 |
"faiss_index_sysml", embeddings, allow_dangerous_deserialization=True
|
40 |
)
|
41 |
|
42 |
+
# Initialize Azure OpenAI client directly
|
43 |
+
client = AzureOpenAI(
|
44 |
+
api_key=AZURE_OPENAI_API_KEY,
|
45 |
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
46 |
+
api_version="2024-08-01-preview"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
history = []
|
50 |
|
51 |
+
# Chatbot logic using AzureOpenAI directly
|
52 |
def sysml_chatbot(message, history):
|
53 |
+
# Perform retrieval
|
54 |
+
retriever = vectorstore.as_retriever()
|
55 |
+
docs = retriever.get_relevant_documents(message)
|
56 |
+
context = "\n\n".join(doc.page_content for doc in docs[:4])
|
57 |
+
|
58 |
+
# Compose prompt with retrieved context
|
59 |
+
system_prompt = "You are a helpful assistant knowledgeable in SysML. Use the context below to answer the user's question.\n\nContext:\n" + context
|
60 |
+
|
61 |
+
response = client.chat.completions.create(
|
62 |
+
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": system_prompt},
|
65 |
+
{"role": "user", "content": message}
|
66 |
+
]
|
67 |
+
)
|
68 |
+
|
69 |
+
answer = response.choices[0].message.content
|
70 |
history.append((message, answer))
|
71 |
return "", history
|
72 |
|