Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,38 +3,32 @@ import gradio as gr
|
|
3 |
import warnings
|
4 |
import json
|
5 |
from dotenv import load_dotenv
|
6 |
-
from typing import
|
7 |
import time
|
8 |
from functools import lru_cache
|
9 |
import logging
|
10 |
-
|
11 |
-
from langchain.agents import Tool, AgentExecutor
|
12 |
-
from langchain.tools.retriever import create_retriever_tool
|
13 |
-
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
14 |
from langchain_community.vectorstores import FAISS
|
15 |
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
16 |
-
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
17 |
from openai import AzureOpenAI
|
18 |
|
19 |
-
|
20 |
# Patch Gradio bug
|
21 |
import gradio_client.utils
|
22 |
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"
|
23 |
|
24 |
-
|
25 |
# Load environment variables
|
26 |
load_dotenv()
|
27 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
28 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
29 |
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
|
30 |
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
|
31 |
-
|
32 |
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
|
33 |
raise ValueError("Missing one or more Azure OpenAI environment variables.")
|
34 |
-
|
35 |
warnings.filterwarnings("ignore")
|
36 |
-
|
37 |
-
# Embeddings
|
38 |
embeddings = AzureOpenAIEmbeddings(
|
39 |
azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
|
40 |
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
@@ -42,57 +36,41 @@ embeddings = AzureOpenAIEmbeddings(
|
|
42 |
openai_api_version="2025-01-01-preview",
|
43 |
chunk_size=1000
|
44 |
)
|
45 |
-
|
46 |
-
#
|
47 |
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
48 |
-
|
49 |
-
# Build the absolute path to the faiss_index_sysml directory relative to this script
|
50 |
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
|
51 |
-
# Load FAISS vectorstore
|
52 |
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
53 |
-
|
54 |
-
#
|
55 |
client = AzureOpenAI(
|
56 |
api_key=AZURE_OPENAI_API_KEY,
|
57 |
api_version="2025-01-01-preview",
|
58 |
azure_endpoint=AZURE_OPENAI_ENDPOINT
|
59 |
)
|
60 |
-
|
61 |
-
|
62 |
logger = logging.getLogger(__name__)
|
|
|
63 |
# SysML retriever function
|
64 |
@lru_cache(maxsize=100)
|
65 |
def sysml_retriever(query: str) -> str:
|
66 |
-
start_time = time.time()
|
67 |
try:
|
68 |
results = vectorstore.similarity_search(query, k=100)
|
69 |
contexts = [doc.page_content for doc in results]
|
70 |
-
|
71 |
-
|
72 |
-
# Log performance metrics
|
73 |
-
duration = time.time() - start_time
|
74 |
-
print(f"Retrieval completed in {duration:.2f}s for query: {query[:50]}...")
|
75 |
-
|
76 |
-
return response
|
77 |
except Exception as e:
|
78 |
logger.error(f"Retrieval error: {str(e)}")
|
79 |
return "Unable to retrieve information at this time."
|
80 |
-
|
81 |
-
|
82 |
-
# sysml_retriever = create_retriever_tool(
|
83 |
-
# retriever=vectorstore.as_retriever(),
|
84 |
-
# name="SysMLRetriever",
|
85 |
-
# description="Use this to answer questions about SysML diagrams and modeling."
|
86 |
-
# )
|
87 |
|
88 |
# Dummy functions
|
89 |
def dummy_weather_lookup(location: str = "London") -> str:
|
90 |
return f"The weather in {location} is sunny and 25°C."
|
91 |
-
|
92 |
def dummy_time_lookup(timezone: str = "UTC") -> str:
|
93 |
return f"The current time in {timezone} is 3:00 PM."
|
94 |
-
|
95 |
-
# Tools
|
96 |
tools_definition = [
|
97 |
{
|
98 |
"type": "function",
|
@@ -102,10 +80,7 @@ tools_definition = [
|
|
102 |
"parameters": {
|
103 |
"type": "object",
|
104 |
"properties": {
|
105 |
-
"query": {
|
106 |
-
"type": "string",
|
107 |
-
"description": "The search query to find information about SysML"
|
108 |
-
}
|
109 |
},
|
110 |
"required": ["query"]
|
111 |
}
|
@@ -119,14 +94,11 @@ tools_definition = [
|
|
119 |
"parameters": {
|
120 |
"type": "object",
|
121 |
"properties": {
|
122 |
-
"location": {
|
123 |
-
"type": "string",
|
124 |
-
"description": "The location to look up the weather for"
|
125 |
-
}
|
126 |
},
|
127 |
"required": ["location"]
|
128 |
}
|
129 |
-
}
|
130 |
},
|
131 |
{
|
132 |
"type": "function",
|
@@ -136,24 +108,21 @@ tools_definition = [
|
|
136 |
"parameters": {
|
137 |
"type": "object",
|
138 |
"properties": {
|
139 |
-
"timezone": {
|
140 |
-
"type": "string",
|
141 |
-
"description": "The timezone to look up the current time for"
|
142 |
-
}
|
143 |
},
|
144 |
"required": ["timezone"]
|
145 |
}
|
146 |
}
|
147 |
}
|
148 |
]
|
149 |
-
|
150 |
# Tool execution mapping
|
151 |
tool_mapping = {
|
152 |
"SysMLRetriever": sysml_retriever,
|
153 |
"WeatherLookup": dummy_weather_lookup,
|
154 |
"TimeLookup": dummy_time_lookup
|
155 |
}
|
156 |
-
|
157 |
# Convert chat history
|
158 |
def convert_history_to_messages(history):
|
159 |
messages = []
|
@@ -162,113 +131,72 @@ def convert_history_to_messages(history):
|
|
162 |
messages.append({"role": "assistant", "content": bot})
|
163 |
return messages
|
164 |
|
165 |
-
|
166 |
-
history = []
|
167 |
-
|
168 |
-
|
169 |
-
# Main chatbot function with direct function calling
|
170 |
def sysml_chatbot(message, history):
|
171 |
-
# Convert history to messages format
|
172 |
chat_messages = convert_history_to_messages(history)
|
173 |
-
|
174 |
-
# Add system message at beginning
|
175 |
full_messages = [
|
176 |
-
{"role": "system", "content": "You are a helpful SysML modeling assistant and also a capable smart Assistant
|
177 |
-
]
|
178 |
-
full_messages.extend(chat_messages)
|
179 |
-
|
180 |
-
# Add current user message
|
181 |
-
full_messages.append({"role": "user", "content": message})
|
182 |
-
|
183 |
try:
|
184 |
-
# First call to get either a direct answer or a function call
|
185 |
response = client.chat.completions.create(
|
186 |
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
187 |
messages=full_messages,
|
188 |
tools=tools_definition,
|
189 |
tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
|
190 |
)
|
191 |
-
|
192 |
assistant_message = response.choices[0].message
|
193 |
-
|
194 |
-
# Check if the model wants to call a function
|
195 |
if assistant_message.tool_calls:
|
196 |
-
# Get the function call details
|
197 |
tool_call = assistant_message.tool_calls[0]
|
198 |
function_name = tool_call.function.name
|
199 |
function_args = json.loads(tool_call.function.arguments)
|
200 |
-
print("Attempting function calling...")
|
201 |
-
# Execute the function
|
202 |
if function_name in tool_mapping:
|
203 |
function_response = tool_mapping[function_name](**function_args)
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
full_messages.append({
|
211 |
"role": "tool",
|
212 |
"tool_call_id": tool_call.id,
|
213 |
"content": function_response
|
214 |
})
|
215 |
-
|
216 |
-
# Second call to get the final answer based on the function result
|
217 |
second_response = client.chat.completions.create(
|
218 |
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
219 |
messages=full_messages
|
220 |
)
|
221 |
-
|
222 |
answer = second_response.choices[0].message.content
|
223 |
-
print("Getting final response after function execution...")
|
224 |
-
#print(f"Function '{function_name}' executed successfully. Response: {answer}")
|
225 |
else:
|
226 |
-
answer = f"I tried to use a function '{function_name}' that's not available.
|
227 |
else:
|
228 |
-
# Model provided a direct answer
|
229 |
answer = assistant_message.content
|
230 |
-
|
231 |
history.append((message, answer))
|
232 |
-
return
|
233 |
-
|
234 |
except Exception as e:
|
235 |
print(f"Error in function calling: {str(e)}")
|
236 |
-
|
237 |
-
|
238 |
-
try:
|
239 |
-
simple_messages = [
|
240 |
-
{"role": "system", "content": "You are a helpful SysML modeling assistant."}
|
241 |
-
]
|
242 |
-
simple_messages.extend(chat_messages)
|
243 |
-
simple_messages.append({"role": "user", "content": message})
|
244 |
-
|
245 |
-
fallback_response = client.chat.completions.create(
|
246 |
-
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
247 |
-
messages=simple_messages
|
248 |
-
)
|
249 |
-
|
250 |
-
answer = fallback_response.choices[0].message.content
|
251 |
-
except Exception as fallback_error:
|
252 |
-
print(f"Error in fallback: {str(fallback_error)}")
|
253 |
-
answer = "I'm having trouble accessing my tools right now. SysML is a modeling language used in systems engineering to visualize and analyze complex systems through various diagram types."
|
254 |
-
|
255 |
-
history.append((message, answer))
|
256 |
-
return answer, history
|
257 |
|
258 |
-
# Gradio UI
|
259 |
with gr.Blocks(css="""
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
""") as demo:
|
267 |
-
|
268 |
gr.Markdown("## SysModeler Chatbot")
|
269 |
|
270 |
chatbot = gr.Chatbot(height=600)
|
271 |
-
|
272 |
with gr.Row():
|
273 |
with gr.Column(scale=5):
|
274 |
msg = gr.Textbox(
|
@@ -277,19 +205,14 @@ with gr.Blocks(css="""
|
|
277 |
show_label=False
|
278 |
)
|
279 |
with gr.Column(scale=1, min_width=50):
|
280 |
-
submit_btn = gr.Button("➤")
|
281 |
|
282 |
clear = gr.Button("Clear")
|
|
|
283 |
|
284 |
-
state =
|
285 |
-
|
286 |
-
submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=["", chatbot])
|
287 |
-
msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=["", chatbot]) # still supports enter key
|
288 |
-
|
289 |
-
# submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[gr.Textbox.update(value=""), chatbot])
|
290 |
-
# msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[gr.Textbox.update(value=""), chatbot])
|
291 |
-
|
292 |
clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
|
293 |
|
294 |
if __name__ == "__main__":
|
295 |
-
demo.launch()
|
|
|
3 |
import warnings
|
4 |
import json
|
5 |
from dotenv import load_dotenv
|
6 |
+
from typing import List
|
7 |
import time
|
8 |
from functools import lru_cache
|
9 |
import logging
|
10 |
+
|
|
|
|
|
|
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import AzureOpenAIEmbeddings
|
|
|
13 |
from openai import AzureOpenAI
|
14 |
|
|
|
15 |
# Patch Gradio bug
|
16 |
import gradio_client.utils
|
17 |
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"
|
18 |
|
|
|
19 |
# Load environment variables
|
20 |
load_dotenv()
|
21 |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
22 |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
23 |
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
|
24 |
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
|
25 |
+
|
26 |
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
|
27 |
raise ValueError("Missing one or more Azure OpenAI environment variables.")
|
28 |
+
|
29 |
warnings.filterwarnings("ignore")
|
30 |
+
|
31 |
+
# Embeddings
|
32 |
embeddings = AzureOpenAIEmbeddings(
|
33 |
azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
|
34 |
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
|
|
36 |
openai_api_version="2025-01-01-preview",
|
37 |
chunk_size=1000
|
38 |
)
|
39 |
+
|
40 |
+
# Vectorstore
|
41 |
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
42 |
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
|
|
|
43 |
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
44 |
+
|
45 |
+
# OpenAI client
|
46 |
client = AzureOpenAI(
|
47 |
api_key=AZURE_OPENAI_API_KEY,
|
48 |
api_version="2025-01-01-preview",
|
49 |
azure_endpoint=AZURE_OPENAI_ENDPOINT
|
50 |
)
|
51 |
+
|
52 |
+
# Logger
|
53 |
logger = logging.getLogger(__name__)
|
54 |
+
|
55 |
# SysML retriever function
|
56 |
@lru_cache(maxsize=100)
|
57 |
def sysml_retriever(query: str) -> str:
|
|
|
58 |
try:
|
59 |
results = vectorstore.similarity_search(query, k=100)
|
60 |
contexts = [doc.page_content for doc in results]
|
61 |
+
return "\n\n".join(contexts)
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
logger.error(f"Retrieval error: {str(e)}")
|
64 |
return "Unable to retrieve information at this time."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Dummy functions
|
67 |
def dummy_weather_lookup(location: str = "London") -> str:
|
68 |
return f"The weather in {location} is sunny and 25°C."
|
69 |
+
|
70 |
def dummy_time_lookup(timezone: str = "UTC") -> str:
|
71 |
return f"The current time in {timezone} is 3:00 PM."
|
72 |
+
|
73 |
+
# Tools for function calling
|
74 |
tools_definition = [
|
75 |
{
|
76 |
"type": "function",
|
|
|
80 |
"parameters": {
|
81 |
"type": "object",
|
82 |
"properties": {
|
83 |
+
"query": {"type": "string", "description": "The search query to find information about SysML"}
|
|
|
|
|
|
|
84 |
},
|
85 |
"required": ["query"]
|
86 |
}
|
|
|
94 |
"parameters": {
|
95 |
"type": "object",
|
96 |
"properties": {
|
97 |
+
"location": {"type": "string", "description": "The location to look up the weather for"}
|
|
|
|
|
|
|
98 |
},
|
99 |
"required": ["location"]
|
100 |
}
|
101 |
+
}
|
102 |
},
|
103 |
{
|
104 |
"type": "function",
|
|
|
108 |
"parameters": {
|
109 |
"type": "object",
|
110 |
"properties": {
|
111 |
+
"timezone": {"type": "string", "description": "The timezone to look up the current time for"}
|
|
|
|
|
|
|
112 |
},
|
113 |
"required": ["timezone"]
|
114 |
}
|
115 |
}
|
116 |
}
|
117 |
]
|
118 |
+
|
119 |
# Tool execution mapping
|
120 |
tool_mapping = {
|
121 |
"SysMLRetriever": sysml_retriever,
|
122 |
"WeatherLookup": dummy_weather_lookup,
|
123 |
"TimeLookup": dummy_time_lookup
|
124 |
}
|
125 |
+
|
126 |
# Convert chat history
|
127 |
def convert_history_to_messages(history):
|
128 |
messages = []
|
|
|
131 |
messages.append({"role": "assistant", "content": bot})
|
132 |
return messages
|
133 |
|
134 |
+
# Chatbot logic
|
|
|
|
|
|
|
|
|
135 |
def sysml_chatbot(message, history):
|
|
|
136 |
chat_messages = convert_history_to_messages(history)
|
|
|
|
|
137 |
full_messages = [
|
138 |
+
{"role": "system", "content": "You are a helpful SysML modeling assistant and also a capable smart Assistant"}
|
139 |
+
] + chat_messages + [{"role": "user", "content": message}]
|
|
|
|
|
|
|
|
|
|
|
140 |
try:
|
|
|
141 |
response = client.chat.completions.create(
|
142 |
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
143 |
messages=full_messages,
|
144 |
tools=tools_definition,
|
145 |
tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
|
146 |
)
|
|
|
147 |
assistant_message = response.choices[0].message
|
|
|
|
|
148 |
if assistant_message.tool_calls:
|
|
|
149 |
tool_call = assistant_message.tool_calls[0]
|
150 |
function_name = tool_call.function.name
|
151 |
function_args = json.loads(tool_call.function.arguments)
|
|
|
|
|
152 |
if function_name in tool_mapping:
|
153 |
function_response = tool_mapping[function_name](**function_args)
|
154 |
+
full_messages.append({
|
155 |
+
"role": "assistant",
|
156 |
+
"content": None,
|
157 |
+
"tool_calls": [{
|
158 |
+
"id": tool_call.id,
|
159 |
+
"type": "function",
|
160 |
+
"function": {
|
161 |
+
"name": function_name,
|
162 |
+
"arguments": tool_call.function.arguments
|
163 |
+
}
|
164 |
+
}]
|
165 |
+
})
|
166 |
full_messages.append({
|
167 |
"role": "tool",
|
168 |
"tool_call_id": tool_call.id,
|
169 |
"content": function_response
|
170 |
})
|
|
|
|
|
171 |
second_response = client.chat.completions.create(
|
172 |
model=AZURE_OPENAI_LLM_DEPLOYMENT,
|
173 |
messages=full_messages
|
174 |
)
|
|
|
175 |
answer = second_response.choices[0].message.content
|
|
|
|
|
176 |
else:
|
177 |
+
answer = f"I tried to use a function '{function_name}' that's not available."
|
178 |
else:
|
|
|
179 |
answer = assistant_message.content
|
|
|
180 |
history.append((message, answer))
|
181 |
+
return "", history
|
|
|
182 |
except Exception as e:
|
183 |
print(f"Error in function calling: {str(e)}")
|
184 |
+
history.append((message, "Sorry, something went wrong."))
|
185 |
+
return "", history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
# === Gradio UI ===
|
188 |
with gr.Blocks(css="""
|
189 |
+
#submit-btn {
|
190 |
+
height: 100%;
|
191 |
+
background-color: #48CAE4;
|
192 |
+
color: white;
|
193 |
+
font-size: 1.5em;
|
194 |
+
}
|
195 |
""") as demo:
|
196 |
+
|
197 |
gr.Markdown("## SysModeler Chatbot")
|
198 |
|
199 |
chatbot = gr.Chatbot(height=600)
|
|
|
200 |
with gr.Row():
|
201 |
with gr.Column(scale=5):
|
202 |
msg = gr.Textbox(
|
|
|
205 |
show_label=False
|
206 |
)
|
207 |
with gr.Column(scale=1, min_width=50):
|
208 |
+
submit_btn = gr.Button("➤", elem_id="submit-btn")
|
209 |
|
210 |
clear = gr.Button("Clear")
|
211 |
+
state = gr.State([])
|
212 |
|
213 |
+
submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
|
214 |
+
msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
|
216 |
|
217 |
if __name__ == "__main__":
|
218 |
+
demo.launch()
|