SysModeler-Chatbot / vectorDB_upload_script.py
SysModeler's picture
Upload vectorDB_upload_script.py (#2)
922d194 verified
raw
history blame
7.54 kB
"""
Script to store FAISS and pickle files in Azure Cosmos DB MongoDB API
This script should be run only once to upload the vector database files.
run this at root of the project:
python -m app.services.chatbot.vectorDB_upload_script
"""
import os
import asyncio
from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorGridFSBucket
from datetime import datetime
import logging
from dotenv import load_dotenv
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables from .env
load_dotenv()
# Database configuration
MONGO_URI = os.getenv("MONGODB_KEY")
DB_NAME = "SysmodelerDB"
BUCKET_NAME = "vector_db"
# File paths
FAISS_PATH = r"c:\Users\User\Downloads\faiss_index_sysml\index.faiss"
PICKLE_PATH = r"c:\Users\User\Downloads\faiss_index_sysml\index.pkl"
class VectorDBUploader:
def __init__(self):
self.client = None
self.db = None
self.fs = None
async def connect(self):
"""Connect to MongoDB"""
try:
self.client = AsyncIOMotorClient(MONGO_URI)
self.db = self.client[DB_NAME]
self.fs = AsyncIOMotorGridFSBucket(self.db, bucket_name=BUCKET_NAME)
# Test connection
await self.client.admin.command('ping')
logger.info("Successfully connected to MongoDB")
return True
except Exception as e:
logger.error(f"Failed to connect to MongoDB: {e}")
return False
async def file_exists(self, filename: str) -> bool:
"""Check if file already exists in GridFS"""
try:
async for file_doc in self.fs.find({"filename": filename}):
return True
return False
except Exception as e:
logger.error(f"Error checking file existence: {e}")
return False
# async def upload_file(self, file_path: str, filename: str) -> bool:
# """Upload a file to GridFS"""
# try:
# # Check if file exists locally
# if not os.path.exists(file_path):
# logger.error(f"Local file not found: {file_path}")
# return False
# # Check if file already exists in database
# if await self.file_exists(filename):
# logger.warning(f"File {filename} already exists in database. Skipping...")
# return True
# # Get file size for logging
# file_size = os.path.getsize(file_path)
# logger.info(f"Uploading {filename} ({file_size} bytes)...")
# # Upload file
# with open(file_path, 'rb') as f:
# file_id = await self.fs.upload_from_stream(
# filename,
# f,
# metadata={
# "uploaded_at": datetime.utcnow(),
# "original_path": file_path,
# "file_size": file_size,
# "description": f"Vector database file: {filename}"
# }
# )
# logger.info(f"Successfully uploaded {filename} with ID: {file_id}")
# return True
# except Exception as e:
# logger.error(f"Failed to upload {filename}: {e}")
# return False
async def upload_file(self, file_path: str, filename: str) -> bool:
"""Upload a file to GridFS, overwriting any existing files with the same name"""
try:
# Check if file exists locally
if not os.path.exists(file_path):
logger.error(f"Local file not found: {file_path}")
return False
# Remove any existing file with the same name
async for file_doc in self.fs.find({"filename": filename}):
await self.fs.delete(file_doc._id)
logger.info(f"Deleted existing file: {filename} (ID: {file_doc._id})")
# Get file size for logging
file_size = os.path.getsize(file_path)
logger.info(f"Uploading {filename} ({file_size} bytes)...")
# Upload file
with open(file_path, 'rb') as f:
file_id = await self.fs.upload_from_stream(
filename,
f,
metadata={
"uploaded_at": datetime.utcnow(),
"original_path": file_path,
"file_size": file_size,
"description": f"Vector database file: {filename}"
}
)
logger.info(f"Successfully uploaded {filename} with ID: {file_id}")
return True
except Exception as e:
logger.error(f"Failed to upload {filename}: {e}")
return False
async def list_files(self):
"""List all files in the GridFS bucket"""
try:
logger.info(f"Files in {BUCKET_NAME} bucket:")
async for file_doc in self.fs.find():
logger.info(f"- {file_doc.filename} (ID: {file_doc._id}, Size: {file_doc.length} bytes)")
except Exception as e:
logger.error(f"Failed to list files: {e}")
async def upload_vector_files(self):
"""Upload both FAISS and pickle files"""
files_to_upload = [
(FAISS_PATH, "index.faiss"),
(PICKLE_PATH, "index.pkl")
]
success_count = 0
for file_path, filename in files_to_upload:
if await self.upload_file(file_path, filename):
success_count += 1
else:
logger.error(f"Failed to upload {filename}")
logger.info(f"Upload completed: {success_count}/{len(files_to_upload)} files uploaded successfully")
return success_count == len(files_to_upload)
async def close(self):
"""Close database connection"""
if self.client:
self.client.close()
logger.info("Database connection closed")
async def main():
"""Main function to upload vector database files"""
uploader = VectorDBUploader()
try:
# Connect to database
if not await uploader.connect():
logger.error("Failed to connect to database. Exiting...")
return
# Upload files
logger.info("Starting vector database files upload...")
success = await uploader.upload_vector_files()
if success:
logger.info("All files uploaded successfully!")
else:
logger.error("Some files failed to upload")
# List all files in the bucket
await uploader.list_files()
except Exception as e:
logger.error(f"Unexpected error: {e}")
finally:
await uploader.close()
if __name__ == "__main__":
print("Vector Database File Uploader")
print("=" * 50)
print(f"Database: {DB_NAME}")
print(f"Bucket: {BUCKET_NAME}")
print(f"FAISS file: {FAISS_PATH}")
print(f"Pickle file: {PICKLE_PATH}")
print("=" * 50)
# Run the upload process
asyncio.run(main())