Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from langchain.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.agents import Tool, AgentExecutor | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import AzureOpenAIEmbeddings | |
from langchain_community.chat_models import AzureChatOpenAI | |
from openai import AzureOpenAI | |
import warnings | |
# Load environment variables | |
load_dotenv() | |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") | |
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") | |
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT") | |
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT") | |
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]): | |
raise ValueError("Missing one or more Azure OpenAI environment variables.") | |
warnings.filterwarnings("ignore") | |
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") | |
if not AZURE_OPENAI_API_KEY: | |
raise ValueError("Missing AZURE_OPENAI_API_KEY in environment variables.") | |
chunk_size = 500 | |
# Extract Data from the PDFs | |
def load_pdf_file(data_path): | |
loader = DirectoryLoader(data_path, glob="*.pdf", loader_cls=PyPDFLoader) | |
documents = loader.load() | |
return documents | |
# Split the data into chunks | |
def text_split(docs): | |
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=20) | |
return splitter.split_documents(docs) | |
# Set up LLM and Embedding | |
llm = AzureChatOpenAI( | |
deployment_name=AZURE_OPENAI_LLM_DEPLOYMENT, | |
azure_endpoint=AZURE_OPENAI_ENDPOINT, | |
openai_api_key=AZURE_OPENAI_API_KEY, | |
openai_api_version="2023-12-01-preview" # or your supported version | |
# temperature=0.5 # Only if supported by your deployment | |
) | |
embeddings = AzureOpenAIEmbeddings( | |
azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT, | |
azure_endpoint=AZURE_OPENAI_ENDPOINT, | |
openai_api_key=AZURE_OPENAI_API_KEY, | |
openai_api_version="2023-12-01-preview", | |
chunk_size=chunk_size # or another value up to 2048 | |
) | |
# Load PDF, chunk it, embed it, and store in FAISS | |
pdf_docs = load_pdf_file("Dataset/") # Update this to your PDF folder | |
chunks = text_split(pdf_docs) | |
vectorstore = FAISS.from_documents(chunks, embeddings) | |
vectorstore.save_local("faiss_index_sysml") | |
# Load FAISS and create retriever QA chain | |
# new_vectorstore = FAISS.load_local("faiss_index_sysml", embeddings, allow_dangerous_deserialization=True) | |
# qa = RetrievalQA.from_chain_type( | |
# llm=llm, | |
# chain_type="stuff", | |
# retriever=new_vectorstore.as_retriever() | |
# ) | |
# # Run a sample query | |
# query = "What is SysML used for?" | |
# print("User:", query) | |
# print("Bot:", qa.run(query)) | |