File size: 10,062 Bytes
fc3a249
 
 
 
 
 
cd9520a
fc3a249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9520a
fc3a249
 
 
 
 
 
 
 
 
 
cd9520a
fc3a249
3e4e3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc3a249
 
 
3e4e3cb
 
cd9520a
3e4e3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9520a
3e4e3cb
 
 
 
 
 
 
 
 
fc3a249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9520a
fc3a249
 
 
 
 
 
 
 
 
 
cd9520a
6b99f82
 
 
cd9520a
fc3a249
a5ef3d2
cd9520a
3e4e3cb
 
 
 
 
 
 
 
 
 
 
cd9520a
3e4e3cb
 
cd9520a
fc3a249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4e3cb
fc3a249
 
 
 
3e4e3cb
fc3a249
 
 
 
 
 
 
3c3e008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc3a249
3c3e008
fc3a249
 
 
 
cd9520a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import gradio as gr
import warnings
import json
from dotenv import load_dotenv
import logging
from functools import lru_cache

from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import AzureOpenAIEmbeddings
from openai import AzureOpenAI

# Patch Gradio bug
import gradio_client.utils
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"

# Load environment variables
load_dotenv()
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")

if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
    raise ValueError("Missing one or more Azure OpenAI environment variables.")

warnings.filterwarnings("ignore")

# Embeddings
embeddings = AzureOpenAIEmbeddings(
    azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
    azure_endpoint=AZURE_OPENAI_ENDPOINT,
    openai_api_key=AZURE_OPENAI_API_KEY,
    openai_api_version="2025-01-01-preview",
    chunk_size=1000
)

# Vectorstore
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)

# OpenAI client
client = AzureOpenAI(
    api_key=AZURE_OPENAI_API_KEY,
    api_version="2025-01-01-preview",
    azure_endpoint=AZURE_OPENAI_ENDPOINT
)

logger = logging.getLogger(__name__)

def clean_em_dashes(text: str) -> str:
    text = text.replace("—which", ", which")
    text = text.replace("—that", ", that")
    text = text.replace("—no", ". No")
    text = text.replace("—and", ", and")
    text = text.replace("—but", ", but")
    text = text.replace("—so", ", so")
    text = text.replace("—you", ". You")
    text = text.replace("—it", ". It")
    text = text.replace("—just", ". Just")
    text = text.replace("—great", ", great")
    text = text.replace("—this", ". This")
    text = text.replace("—", ", ")
    return text

@lru_cache(maxsize=100)
def sysml_retriever(query: str) -> str:
    try:
        results = vectorstore.similarity_search_with_score(query, k=100)
        weighted_results = []
        for (doc, score) in results:
            doc_source = doc.metadata.get('source', '').lower() if hasattr(doc, 'metadata') else str(doc).lower()
            is_sysmodeler = (
                'sysmodeler' in doc_source or 
                'user manual' in doc_source or
                'sysmodeler.ai' in doc.page_content.lower() or
                'workspace.sysmodeler.ai' in doc.page_content.lower() or
                'Create with AI' in doc.page_content or
                'Canvas Overview' in doc.page_content or
                'AI-powered' in doc.page_content or
                'voice input' in doc.page_content or
                'Canvas interface' in doc.page_content or
                'Project Creation' in doc.page_content or
                'Shape Palette' in doc.page_content or
                'AI Copilot' in doc.page_content or
                'SynthAgent' in doc.page_content or
                'workspace dashboard' in doc.page_content.lower()
            )
            if is_sysmodeler:
                weighted_score = score * 0.6
                source_type = "SysModeler"
            else:
                weighted_score = score
                source_type = "Other"
            doc.metadata = doc.metadata if hasattr(doc, 'metadata') else {}
            doc.metadata['source_type'] = 'sysmodeler' if is_sysmodeler else 'other'
            doc.metadata['weighted_score'] = weighted_score
            doc.metadata['original_score'] = score
            weighted_results.append((doc, weighted_score, source_type))
        weighted_results.sort(key=lambda x: x[1])

        query_lower = query.lower()
        is_tool_comparison = any(word in query_lower for word in ['tool', 'compare', 'choose', 'vs', 'versus', 'better'])
        if is_tool_comparison:
            sysmodeler_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "SysModeler"][:8]
            other_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "Other"][:4]
            final_docs = [doc for doc, _ in sysmodeler_docs] + [doc for doc, _ in other_docs]
        else:
            final_docs = [doc for doc, _, _ in weighted_results[:12]]
        contexts = [doc.page_content for doc in final_docs]
        return "\n\n".join(contexts)
    except Exception as e:
        logger.error(f"Retrieval error: {str(e)}")
        return "Unable to retrieve information at this time."

tools_definition = [
    {
        "type": "function",
        "function": {
            "name": "SysMLRetriever",
            "description": "Use this to answer questions about SysML diagrams and modeling.",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {"type": "string", "description": "The search query to find information about SysML"}
                },
                "required": ["query"]
            }
        }
    }
]

tool_mapping = {
    "SysMLRetriever": sysml_retriever
}

def convert_history_to_messages(history):
    messages = []
    for user, bot in history:
        messages.append({"role": "user", "content": user})
        messages.append({"role": "assistant", "content": bot})
    return messages

def sysml_chatbot(message, history):
    if not message or not message.strip():
        answer = "Can I help you with anything else?"
        history.append(("", answer))
        return "", history

    chat_messages = convert_history_to_messages(history)
    full_messages = [
        {"role": "system", "content": """You are Abu, SysModeler.ai's friendly and knowledgeable assistant. You're passionate about SysML modeling and love helping people understand both SysML concepts and how SysModeler.ai can make their modeling work easier.

CONVERSATION STYLE:
- Only introduce yourself as "Hi, I'm Abu!" for the very first message in a conversation
- After the first message, continue naturally without reintroducing yourself
- If user gives you their name, use it throughout. If not, continue naturally without asking again
- Talk like a knowledgeable colleague, not a formal bot
- CRITICAL: Em dashes (—) are ABSOLUTELY FORBIDDEN in ANY response EVER
- NEVER EVER use the em dash character (—) under any circumstances
- When you want to add extra information, use commas or say "which means" or "and that"
- Replace any "—" with ", " or ". " or " and " or " which "
- Be enthusiastic but not pushy about SysModeler.ai
- Ask engaging follow-up questions to keep the conversation going
- Use "you" and "your" to make it personal
- Share insights like you're having a friendly chat
"""}
    ] + chat_messages + [{"role": "user", "content": message}]
    try:
        response = client.chat.completions.create(
            model=AZURE_OPENAI_LLM_DEPLOYMENT,
            messages=full_messages,
            tools=tools_definition,
            tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
        )
        assistant_message = response.choices[0].message
        if assistant_message.tool_calls:
            tool_call = assistant_message.tool_calls[0]
            function_name = tool_call.function.name
            function_args = json.loads(tool_call.function.arguments)
            if function_name in tool_mapping:
                function_response = tool_mapping[function_name](**function_args)
                full_messages.append({
                    "role": "assistant",
                    "content": None,
                    "tool_calls": [{
                        "id": tool_call.id,
                        "type": "function",
                        "function": {
                            "name": function_name,
                            "arguments": tool_call.function.arguments
                        }
                    }]
                })
                full_messages.append({
                    "role": "tool",
                    "tool_call_id": tool_call.id,
                    "content": function_response
                })
                second_response = client.chat.completions.create(
                    model=AZURE_OPENAI_LLM_DEPLOYMENT,
                    messages=full_messages
                )
                answer = second_response.choices[0].message.content
                answer = clean_em_dashes(answer)
            else:
                answer = f"I tried to use a function '{function_name}' that's not available."
        else:
            answer = assistant_message.content
            answer = clean_em_dashes(answer) if answer else answer
        history.append((message, answer))
        return "", history
    except Exception as e:
        history.append((message, "Sorry, something went wrong."))
        return "", history

# === Gradio UI ===
with gr.Blocks(css="""
#submit-btn {
    height: 100%;
    background-color: #48CAE4;
    color: white;
    font-size: 1.5em;
}
""") as demo:

    gr.Markdown("## SysModeler Chatbot")

    chatbot = gr.Chatbot(height=600)
    with gr.Row():
        with gr.Column(scale=5):
            msg = gr.Textbox(
                placeholder="Ask me about SysML diagrams or concepts...",
                lines=3,
                show_label=False
            )
        with gr.Column(scale=1, min_width=50):
            submit_btn = gr.Button("➤", elem_id="submit-btn")

    clear = gr.Button("Clear")
    state = gr.State([])

    submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])

if __name__ == "__main__":
    demo.launch()