Spaces:
Sleeping
Sleeping
File size: 10,062 Bytes
fc3a249 cd9520a fc3a249 cd9520a fc3a249 cd9520a fc3a249 3e4e3cb fc3a249 3e4e3cb cd9520a 3e4e3cb cd9520a 3e4e3cb fc3a249 cd9520a fc3a249 cd9520a 6b99f82 cd9520a fc3a249 a5ef3d2 cd9520a 3e4e3cb cd9520a 3e4e3cb cd9520a fc3a249 3e4e3cb fc3a249 3e4e3cb fc3a249 3c3e008 fc3a249 3c3e008 fc3a249 cd9520a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import gradio as gr
import warnings
import json
from dotenv import load_dotenv
import logging
from functools import lru_cache
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import AzureOpenAIEmbeddings
from openai import AzureOpenAI
# Patch Gradio bug
import gradio_client.utils
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"
# Load environment variables
load_dotenv()
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
raise ValueError("Missing one or more Azure OpenAI environment variables.")
warnings.filterwarnings("ignore")
# Embeddings
embeddings = AzureOpenAIEmbeddings(
azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
openai_api_key=AZURE_OPENAI_API_KEY,
openai_api_version="2025-01-01-preview",
chunk_size=1000
)
# Vectorstore
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
# OpenAI client
client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version="2025-01-01-preview",
azure_endpoint=AZURE_OPENAI_ENDPOINT
)
logger = logging.getLogger(__name__)
def clean_em_dashes(text: str) -> str:
text = text.replace("—which", ", which")
text = text.replace("—that", ", that")
text = text.replace("—no", ". No")
text = text.replace("—and", ", and")
text = text.replace("—but", ", but")
text = text.replace("—so", ", so")
text = text.replace("—you", ". You")
text = text.replace("—it", ". It")
text = text.replace("—just", ". Just")
text = text.replace("—great", ", great")
text = text.replace("—this", ". This")
text = text.replace("—", ", ")
return text
@lru_cache(maxsize=100)
def sysml_retriever(query: str) -> str:
try:
results = vectorstore.similarity_search_with_score(query, k=100)
weighted_results = []
for (doc, score) in results:
doc_source = doc.metadata.get('source', '').lower() if hasattr(doc, 'metadata') else str(doc).lower()
is_sysmodeler = (
'sysmodeler' in doc_source or
'user manual' in doc_source or
'sysmodeler.ai' in doc.page_content.lower() or
'workspace.sysmodeler.ai' in doc.page_content.lower() or
'Create with AI' in doc.page_content or
'Canvas Overview' in doc.page_content or
'AI-powered' in doc.page_content or
'voice input' in doc.page_content or
'Canvas interface' in doc.page_content or
'Project Creation' in doc.page_content or
'Shape Palette' in doc.page_content or
'AI Copilot' in doc.page_content or
'SynthAgent' in doc.page_content or
'workspace dashboard' in doc.page_content.lower()
)
if is_sysmodeler:
weighted_score = score * 0.6
source_type = "SysModeler"
else:
weighted_score = score
source_type = "Other"
doc.metadata = doc.metadata if hasattr(doc, 'metadata') else {}
doc.metadata['source_type'] = 'sysmodeler' if is_sysmodeler else 'other'
doc.metadata['weighted_score'] = weighted_score
doc.metadata['original_score'] = score
weighted_results.append((doc, weighted_score, source_type))
weighted_results.sort(key=lambda x: x[1])
query_lower = query.lower()
is_tool_comparison = any(word in query_lower for word in ['tool', 'compare', 'choose', 'vs', 'versus', 'better'])
if is_tool_comparison:
sysmodeler_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "SysModeler"][:8]
other_docs = [(doc, score) for doc, score, type_ in weighted_results if type_ == "Other"][:4]
final_docs = [doc for doc, _ in sysmodeler_docs] + [doc for doc, _ in other_docs]
else:
final_docs = [doc for doc, _, _ in weighted_results[:12]]
contexts = [doc.page_content for doc in final_docs]
return "\n\n".join(contexts)
except Exception as e:
logger.error(f"Retrieval error: {str(e)}")
return "Unable to retrieve information at this time."
tools_definition = [
{
"type": "function",
"function": {
"name": "SysMLRetriever",
"description": "Use this to answer questions about SysML diagrams and modeling.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query to find information about SysML"}
},
"required": ["query"]
}
}
}
]
tool_mapping = {
"SysMLRetriever": sysml_retriever
}
def convert_history_to_messages(history):
messages = []
for user, bot in history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": bot})
return messages
def sysml_chatbot(message, history):
if not message or not message.strip():
answer = "Can I help you with anything else?"
history.append(("", answer))
return "", history
chat_messages = convert_history_to_messages(history)
full_messages = [
{"role": "system", "content": """You are Abu, SysModeler.ai's friendly and knowledgeable assistant. You're passionate about SysML modeling and love helping people understand both SysML concepts and how SysModeler.ai can make their modeling work easier.
CONVERSATION STYLE:
- Only introduce yourself as "Hi, I'm Abu!" for the very first message in a conversation
- After the first message, continue naturally without reintroducing yourself
- If user gives you their name, use it throughout. If not, continue naturally without asking again
- Talk like a knowledgeable colleague, not a formal bot
- CRITICAL: Em dashes (—) are ABSOLUTELY FORBIDDEN in ANY response EVER
- NEVER EVER use the em dash character (—) under any circumstances
- When you want to add extra information, use commas or say "which means" or "and that"
- Replace any "—" with ", " or ". " or " and " or " which "
- Be enthusiastic but not pushy about SysModeler.ai
- Ask engaging follow-up questions to keep the conversation going
- Use "you" and "your" to make it personal
- Share insights like you're having a friendly chat
"""}
] + chat_messages + [{"role": "user", "content": message}]
try:
response = client.chat.completions.create(
model=AZURE_OPENAI_LLM_DEPLOYMENT,
messages=full_messages,
tools=tools_definition,
tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
)
assistant_message = response.choices[0].message
if assistant_message.tool_calls:
tool_call = assistant_message.tool_calls[0]
function_name = tool_call.function.name
function_args = json.loads(tool_call.function.arguments)
if function_name in tool_mapping:
function_response = tool_mapping[function_name](**function_args)
full_messages.append({
"role": "assistant",
"content": None,
"tool_calls": [{
"id": tool_call.id,
"type": "function",
"function": {
"name": function_name,
"arguments": tool_call.function.arguments
}
}]
})
full_messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": function_response
})
second_response = client.chat.completions.create(
model=AZURE_OPENAI_LLM_DEPLOYMENT,
messages=full_messages
)
answer = second_response.choices[0].message.content
answer = clean_em_dashes(answer)
else:
answer = f"I tried to use a function '{function_name}' that's not available."
else:
answer = assistant_message.content
answer = clean_em_dashes(answer) if answer else answer
history.append((message, answer))
return "", history
except Exception as e:
history.append((message, "Sorry, something went wrong."))
return "", history
# === Gradio UI ===
with gr.Blocks(css="""
#submit-btn {
height: 100%;
background-color: #48CAE4;
color: white;
font-size: 1.5em;
}
""") as demo:
gr.Markdown("## SysModeler Chatbot")
chatbot = gr.Chatbot(height=600)
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
placeholder="Ask me about SysML diagrams or concepts...",
lines=3,
show_label=False
)
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button("➤", elem_id="submit-btn")
clear = gr.Button("Clear")
state = gr.State([])
submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
if __name__ == "__main__":
demo.launch()
|