File size: 10,468 Bytes
211c6f5
00af37b
211c6f5
599e88a
211c6f5
599e88a
 
 
 
 
 
 
 
211c6f5
828f1ff
599e88a
 
00af37b
 
 
 
 
 
 
211c6f5
 
38e58eb
 
b0bb368
828f1ff
599e88a
 
828f1ff
599e88a
211c6f5
599e88a
 
828f1ff
 
cd2d46b
828f1ff
599e88a
828f1ff
 
599e88a
 
 
 
 
 
 
 
 
 
 
 
 
 
211c6f5
599e88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211c6f5
599e88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bca490
 
 
 
 
599e88a
211c6f5
599e88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898e94f
599e88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211c6f5
 
30552bb
 
 
 
 
 
 
 
9bca490
e038228
4ace9ff
2cdacef
4ace9ff
 
2cdacef
4ace9ff
 
 
 
 
2cdacef
f7ec568
4ace9ff
211c6f5
 
 
 
f7ec568
 
4ace9ff
211c6f5
 
f7ec568
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import gradio as gr
import warnings
import json
from dotenv import load_dotenv
from typing import Dict, Any, List, Optional
import time
from functools import lru_cache
import logging
 
from langchain.agents import Tool, AgentExecutor
from langchain.tools.retriever import create_retriever_tool
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import AzureOpenAIEmbeddings
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from openai import AzureOpenAI


# Patch Gradio bug
import gradio_client.utils
gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string"


# Load environment variables
load_dotenv()
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT")
AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT")
 
if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]):
    raise ValueError("Missing one or more Azure OpenAI environment variables.")
 
warnings.filterwarnings("ignore")
 
# Embeddings for retriever
embeddings = AzureOpenAIEmbeddings(
    azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT,
    azure_endpoint=AZURE_OPENAI_ENDPOINT,
    openai_api_key=AZURE_OPENAI_API_KEY,
    openai_api_version="2025-01-01-preview",
    chunk_size=1000
)
 
# Get the directory where this script is located
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
 
# Build the absolute path to the faiss_index_sysml directory relative to this script
FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml")
# Load FAISS vectorstore
vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
 
# Initialize Azure OpenAI client directly
client = AzureOpenAI(
    api_key=AZURE_OPENAI_API_KEY,
    api_version="2025-01-01-preview",
    azure_endpoint=AZURE_OPENAI_ENDPOINT
)
 
 
logger = logging.getLogger(__name__)
# SysML retriever function
@lru_cache(maxsize=100)
def sysml_retriever(query: str) -> str:
    start_time = time.time()
    try:
        results = vectorstore.similarity_search(query, k=100)
        contexts = [doc.page_content for doc in results]
        response = "\n\n".join(contexts)
       
        # Log performance metrics
        duration = time.time() - start_time
        print(f"Retrieval completed in {duration:.2f}s for query: {query[:50]}...")
       
        return response
    except Exception as e:
        logger.error(f"Retrieval error: {str(e)}")
        return "Unable to retrieve information at this time."
 
 
# sysml_retriever = create_retriever_tool(
#     retriever=vectorstore.as_retriever(),
#     name="SysMLRetriever",
#     description="Use this to answer questions about SysML diagrams and modeling."
# )

# Dummy functions
def dummy_weather_lookup(location: str = "London") -> str:
    return f"The weather in {location} is sunny and 25°C."
 
def dummy_time_lookup(timezone: str = "UTC") -> str:
    return f"The current time in {timezone} is 3:00 PM."
 
# Tools definition for OpenAI function calling
tools_definition = [
    {
        "type": "function",
        "function": {
            "name": "SysMLRetriever",
            "description": "Use this to answer questions about SysML diagrams and modeling.",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {
                        "type": "string",
                        "description": "The search query to find information about SysML"
                    }
                },
                "required": ["query"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "WeatherLookup",
            "description": "Use this to look up the current weather in a specified location.",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The location to look up the weather for"
                    }
                },
                "required": ["location"]
            }
        },
    },
    {
        "type": "function",
        "function": {
            "name": "TimeLookup",
            "description": "Use this to look up the current time in a specified timezone.",
            "parameters": {
                "type": "object",
                "properties": {
                    "timezone": {
                        "type": "string",
                        "description": "The timezone to look up the current time for"
                    }
                },
                "required": ["timezone"]
            }
        }
    }
]
 
# Tool execution mapping
tool_mapping = {
    "SysMLRetriever": sysml_retriever,
    "WeatherLookup": dummy_weather_lookup,
    "TimeLookup": dummy_time_lookup
}
 
# Convert chat history
def convert_history_to_messages(history):
    messages = []
    for user, bot in history:
        messages.append({"role": "user", "content": user})
        messages.append({"role": "assistant", "content": bot})
    return messages


history = []


# Main chatbot function with direct function calling
def sysml_chatbot(message, history):
    # Convert history to messages format
    chat_messages = convert_history_to_messages(history)
   
    # Add system message at beginning
    full_messages = [
        {"role": "system", "content": "You are a helpful SysML modeling assistant and also a capable smart Assistant "}
    ]
    full_messages.extend(chat_messages)
   
    # Add current user message
    full_messages.append({"role": "user", "content": message})
   
    try:
        # First call to get either a direct answer or a function call
        response = client.chat.completions.create(
            model=AZURE_OPENAI_LLM_DEPLOYMENT,
            messages=full_messages,
            tools=tools_definition,
            tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}}
        )
       
        assistant_message = response.choices[0].message
       
        # Check if the model wants to call a function
        if assistant_message.tool_calls:
            # Get the function call details
            tool_call = assistant_message.tool_calls[0]
            function_name = tool_call.function.name
            function_args = json.loads(tool_call.function.arguments)
            print("Attempting function calling...")
            # Execute the function
            if function_name in tool_mapping:
                function_response = tool_mapping[function_name](**function_args)
               
                # Append the assistant's request and the function response to messages
                full_messages.append({"role": "assistant", "content": None, "tool_calls": [
                    {"id": tool_call.id, "type": "function", "function": {"name": function_name, "arguments": tool_call.function.arguments}}
                ]})
               
                full_messages.append({
                    "role": "tool",
                    "tool_call_id": tool_call.id,
                    "content": function_response
                })
               
                # Second call to get the final answer based on the function result
                second_response = client.chat.completions.create(
                    model=AZURE_OPENAI_LLM_DEPLOYMENT,
                    messages=full_messages
                )
               
                answer = second_response.choices[0].message.content
                print("Getting final response after function execution...")
                #print(f"Function '{function_name}' executed successfully. Response: {answer}")
            else:
                answer = f"I tried to use a function '{function_name}' that's not available. Let me try again with general knowledge: SysML is a modeling language for systems engineering that helps visualize and analyze complex systems."
        else:
            # Model provided a direct answer
            answer = assistant_message.content
       
        history.append((message, answer))
        return answer, history
   
    except Exception as e:
        print(f"Error in function calling: {str(e)}")
       
        # Fallback to a direct response without function calling
        try:
            simple_messages = [
                {"role": "system", "content": "You are a helpful SysML modeling assistant."}
            ]
            simple_messages.extend(chat_messages)
            simple_messages.append({"role": "user", "content": message})
           
            fallback_response = client.chat.completions.create(
                model=AZURE_OPENAI_LLM_DEPLOYMENT,
                messages=simple_messages
            )
           
            answer = fallback_response.choices[0].message.content
        except Exception as fallback_error:
            print(f"Error in fallback: {str(fallback_error)}")
            answer = "I'm having trouble accessing my tools right now. SysML is a modeling language used in systems engineering to visualize and analyze complex systems through various diagram types."
       
        history.append((message, answer))
        return answer, history

# Gradio UI
with gr.Blocks(css="""
    #submit-btn {
        height: 100%;
        background-color: #48CAE4;
        color: white;
        font-size: 1.5em;
    }
""") as demo:
    
    gr.Markdown("## SysModeler Chatbot")

    chatbot = gr.Chatbot(height=600)
    
    with gr.Row():
        with gr.Column(scale=5):
            msg = gr.Textbox(
                placeholder="Ask me about SysML diagrams or concepts...",
                lines=3,
                show_label=False
            )
        with gr.Column(scale=1, min_width=50):
            submit_btn = gr.Button("➤")

    clear = gr.Button("Clear")

    state = gr.State(history)

    submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])
    msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot])  # still supports enter key
    clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg])

if __name__ == "__main__":
    demo.launch()