Spaces:
Runtime error
Runtime error
syedMohib44
commited on
Commit
·
4d7448f
1
Parent(s):
00e5927
init
Browse files
app.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A model worker executes the model.
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import asyncio
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
import logging
|
9 |
+
import logging.handlers
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import tempfile
|
13 |
+
import threading
|
14 |
+
import traceback
|
15 |
+
import uuid
|
16 |
+
from io import BytesIO
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import trimesh
|
20 |
+
import uvicorn
|
21 |
+
from PIL import Image
|
22 |
+
from fastapi import FastAPI, Request, UploadFile
|
23 |
+
from fastapi.responses import JSONResponse, FileResponse
|
24 |
+
|
25 |
+
from hy3dgen.rembg import BackgroundRemover
|
26 |
+
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline, FloaterRemover, DegenerateFaceRemover, FaceReducer
|
27 |
+
from hy3dgen.texgen import Hunyuan3DPaintPipeline
|
28 |
+
from hy3dgen.text2image import HunyuanDiTPipeline
|
29 |
+
|
30 |
+
LOGDIR = '.'
|
31 |
+
|
32 |
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
33 |
+
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
34 |
+
|
35 |
+
handler = None
|
36 |
+
|
37 |
+
|
38 |
+
def build_logger(logger_name, logger_filename):
|
39 |
+
global handler
|
40 |
+
|
41 |
+
formatter = logging.Formatter(
|
42 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
43 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
44 |
+
)
|
45 |
+
|
46 |
+
# Set the format of root handlers
|
47 |
+
if not logging.getLogger().handlers:
|
48 |
+
logging.basicConfig(level=logging.INFO)
|
49 |
+
logging.getLogger().handlers[0].setFormatter(formatter)
|
50 |
+
|
51 |
+
# Redirect stdout and stderr to loggers
|
52 |
+
stdout_logger = logging.getLogger("stdout")
|
53 |
+
stdout_logger.setLevel(logging.INFO)
|
54 |
+
sl = StreamToLogger(stdout_logger, logging.INFO)
|
55 |
+
sys.stdout = sl
|
56 |
+
|
57 |
+
stderr_logger = logging.getLogger("stderr")
|
58 |
+
stderr_logger.setLevel(logging.ERROR)
|
59 |
+
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
60 |
+
sys.stderr = sl
|
61 |
+
|
62 |
+
# Get logger
|
63 |
+
logger = logging.getLogger(logger_name)
|
64 |
+
logger.setLevel(logging.INFO)
|
65 |
+
|
66 |
+
# Add a file handler for all loggers
|
67 |
+
if handler is None:
|
68 |
+
os.makedirs(LOGDIR, exist_ok=True)
|
69 |
+
filename = os.path.join(LOGDIR, logger_filename)
|
70 |
+
handler = logging.handlers.TimedRotatingFileHandler(
|
71 |
+
filename, when='D', utc=True, encoding='UTF-8')
|
72 |
+
handler.setFormatter(formatter)
|
73 |
+
|
74 |
+
for name, item in logging.root.manager.loggerDict.items():
|
75 |
+
if isinstance(item, logging.Logger):
|
76 |
+
item.addHandler(handler)
|
77 |
+
|
78 |
+
return logger
|
79 |
+
|
80 |
+
|
81 |
+
class StreamToLogger(object):
|
82 |
+
"""
|
83 |
+
Fake file-like stream object that redirects writes to a logger instance.
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(self, logger, log_level=logging.INFO):
|
87 |
+
self.terminal = sys.stdout
|
88 |
+
self.logger = logger
|
89 |
+
self.log_level = log_level
|
90 |
+
self.linebuf = ''
|
91 |
+
|
92 |
+
def __getattr__(self, attr):
|
93 |
+
return getattr(self.terminal, attr)
|
94 |
+
|
95 |
+
def write(self, buf):
|
96 |
+
temp_linebuf = self.linebuf + buf
|
97 |
+
self.linebuf = ''
|
98 |
+
for line in temp_linebuf.splitlines(True):
|
99 |
+
# From the io.TextIOWrapper docs:
|
100 |
+
# On output, if newline is None, any '\n' characters written
|
101 |
+
# are translated to the system default line separator.
|
102 |
+
# By default sys.stdout.write() expects '\n' newlines and then
|
103 |
+
# translates them so this is still cross platform.
|
104 |
+
if line[-1] == '\n':
|
105 |
+
self.logger.log(self.log_level, line.rstrip())
|
106 |
+
else:
|
107 |
+
self.linebuf += line
|
108 |
+
|
109 |
+
def flush(self):
|
110 |
+
if self.linebuf != '':
|
111 |
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
112 |
+
self.linebuf = ''
|
113 |
+
|
114 |
+
|
115 |
+
def pretty_print_semaphore(semaphore):
|
116 |
+
if semaphore is None:
|
117 |
+
return "None"
|
118 |
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
119 |
+
|
120 |
+
|
121 |
+
SAVE_DIR = 'gradio_cache'
|
122 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
123 |
+
|
124 |
+
worker_id = str(uuid.uuid4())[:6]
|
125 |
+
logger = build_logger("controller", f"{SAVE_DIR}/controller.log")
|
126 |
+
|
127 |
+
|
128 |
+
def load_image_from_base64(image):
|
129 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
130 |
+
|
131 |
+
|
132 |
+
def load_image_from_dir(image: UploadFile):
|
133 |
+
"""Loads an image from a given file path."""
|
134 |
+
try:
|
135 |
+
with image.file as f: # Ensures file is properly closed after reading
|
136 |
+
image_bytes = f.read() # Read image bytes
|
137 |
+
image = Image.open(io.BytesIO(image_bytes)) # Convert to PIL image
|
138 |
+
return image
|
139 |
+
except Exception as e:
|
140 |
+
return {"error": f"Failed to read image: {str(e)}"}
|
141 |
+
|
142 |
+
|
143 |
+
class ModelWorker:
|
144 |
+
def __init__(self, model_path='tencent/Hunyuan3D-2', device='cuda'):
|
145 |
+
self.model_path = model_path
|
146 |
+
self.worker_id = worker_id
|
147 |
+
self.device = device
|
148 |
+
logger.info(f"Loading the model {model_path} on worker {worker_id} ...")
|
149 |
+
|
150 |
+
self.rembg = BackgroundRemover()
|
151 |
+
self.pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(model_path, device=device)
|
152 |
+
# self.pipeline_t2i = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled',
|
153 |
+
# device=device)
|
154 |
+
self.pipeline_tex = Hunyuan3DPaintPipeline.from_pretrained(model_path)
|
155 |
+
|
156 |
+
def get_queue_length(self):
|
157 |
+
if model_semaphore is None:
|
158 |
+
return 0
|
159 |
+
else:
|
160 |
+
return args.limit_model_concurrency - model_semaphore._value + (len(
|
161 |
+
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
162 |
+
|
163 |
+
def get_status(self):
|
164 |
+
return {
|
165 |
+
"speed": 1,
|
166 |
+
"queue_length": self.get_queue_length(),
|
167 |
+
}
|
168 |
+
|
169 |
+
@torch.inference_mode()
|
170 |
+
def generate(self, uid, form):
|
171 |
+
params = dict()
|
172 |
+
image = form.get("image") # Returns UploadFile object
|
173 |
+
if image:
|
174 |
+
image = load_image_from_dir(image)
|
175 |
+
|
176 |
+
image = self.rembg(image)
|
177 |
+
params['image'] = image
|
178 |
+
|
179 |
+
if 'mesh' in params:
|
180 |
+
mesh = trimesh.load(BytesIO(base64.b64decode(params["mesh"])), file_type='glb')
|
181 |
+
else:
|
182 |
+
seed = params.get("seed", 1234)
|
183 |
+
params['generator'] = torch.Generator(self.device).manual_seed(seed)
|
184 |
+
params['octree_resolution'] = params.get("octree_resolution", 256)
|
185 |
+
params['num_inference_steps'] = params.get("num_inference_steps", 30)
|
186 |
+
params['guidance_scale'] = params.get('guidance_scale', 7.5)
|
187 |
+
params['mc_algo'] = 'mc'
|
188 |
+
mesh = self.pipeline(**params)[0]
|
189 |
+
|
190 |
+
if params.get('texture', False):
|
191 |
+
mesh = FloaterRemover()(mesh)
|
192 |
+
mesh = DegenerateFaceRemover()(mesh)
|
193 |
+
mesh = FaceReducer()(mesh, max_facenum=params.get('face_count', 40000))
|
194 |
+
mesh = self.pipeline_tex(mesh, image)
|
195 |
+
|
196 |
+
# with tempfile.NamedTemporaryFile(suffix='.glb', delete=False) as temp_file:
|
197 |
+
# print("Thsi is the pathh ====== %s" %temp_file.name)
|
198 |
+
# mesh.export(temp_file.name)
|
199 |
+
# mesh = trimesh.load(temp_file.name)
|
200 |
+
# save_path = os.path.join(SAVE_DIR, f'{str(uid)}.glb')
|
201 |
+
# mesh.export(save_path)
|
202 |
+
|
203 |
+
save_path = os.path.join(SAVE_DIR, f'{str(uid)}.glb')
|
204 |
+
print("Thsi is the pathh ====== %s" %save_path)
|
205 |
+
mesh.export(save_path)
|
206 |
+
torch.cuda.empty_cache()
|
207 |
+
return save_path, uid
|
208 |
+
|
209 |
+
|
210 |
+
app = FastAPI()
|
211 |
+
|
212 |
+
|
213 |
+
@app.post("/generate")
|
214 |
+
async def generate(request: Request):
|
215 |
+
logger.info("Worker generating...")
|
216 |
+
# params = await request.json()
|
217 |
+
form = await request.form()
|
218 |
+
|
219 |
+
# data = dict(params) # Convert form fields to a dictionary
|
220 |
+
# files = {key: params[key] for key in params if hasattr(params[key], "filename")} # Extract files
|
221 |
+
|
222 |
+
uid = uuid.uuid4()
|
223 |
+
try:
|
224 |
+
file_path, uid = worker.generate(uid, form)
|
225 |
+
return FileResponse(file_path)
|
226 |
+
except ValueError as e:
|
227 |
+
traceback.print_exc()
|
228 |
+
print("Caught ValueError:", e)
|
229 |
+
ret = {
|
230 |
+
"text": server_error_msg,
|
231 |
+
"error_code": 1,
|
232 |
+
}
|
233 |
+
return JSONResponse(ret, status_code=404)
|
234 |
+
except torch.cuda.CudaError as e:
|
235 |
+
print("Caught torch.cuda.CudaError:", e)
|
236 |
+
ret = {
|
237 |
+
"text": server_error_msg,
|
238 |
+
"error_code": 1,
|
239 |
+
}
|
240 |
+
return JSONResponse(ret, status_code=404)
|
241 |
+
except Exception as e:
|
242 |
+
print("Caught Unknown Error", e)
|
243 |
+
traceback.print_exc()
|
244 |
+
ret = {
|
245 |
+
"text": server_error_msg,
|
246 |
+
"error_code": 1,
|
247 |
+
}
|
248 |
+
return JSONResponse(ret, status_code=404)
|
249 |
+
|
250 |
+
|
251 |
+
@app.post("/send")
|
252 |
+
async def generate(request: Request):
|
253 |
+
logger.info("Worker send...")
|
254 |
+
params = await request.json()
|
255 |
+
uid = uuid.uuid4()
|
256 |
+
threading.Thread(target=worker.generate, args=(uid, params,)).start()
|
257 |
+
ret = {"uid": str(uid)}
|
258 |
+
return JSONResponse(ret, status_code=200)
|
259 |
+
|
260 |
+
|
261 |
+
@app.get("/status/{uid}")
|
262 |
+
async def status(uid: str):
|
263 |
+
save_file_path = os.path.join(SAVE_DIR, f'{uid}.glb')
|
264 |
+
print(save_file_path, os.path.exists(save_file_path))
|
265 |
+
if not os.path.exists(save_file_path):
|
266 |
+
response = {'status': 'processing'}
|
267 |
+
return JSONResponse(response, status_code=200)
|
268 |
+
else:
|
269 |
+
base64_str = base64.b64encode(open(save_file_path, 'rb').read()).decode()
|
270 |
+
response = {'status': 'completed', 'model_base64': base64_str}
|
271 |
+
return JSONResponse(response, status_code=200)
|
272 |
+
|
273 |
+
|
274 |
+
if __name__ == "__main__":
|
275 |
+
parser = argparse.ArgumentParser()
|
276 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
277 |
+
parser.add_argument("--port", type=str, default=8081)
|
278 |
+
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2')
|
279 |
+
parser.add_argument("--device", type=str, default="cuda")
|
280 |
+
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
281 |
+
args = parser.parse_args()
|
282 |
+
logger.info(f"args: {args}")
|
283 |
+
|
284 |
+
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
285 |
+
|
286 |
+
worker = ModelWorker(model_path=args.model_path, device=args.device)
|
287 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|