import torch import pandas as pd import numpy as np import gradio as gr from PIL import Image from torch.nn import functional as F from collections import OrderedDict from torchvision import transforms from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from custom_resnet import Model def get_device(): if torch.cuda.is_available(): device = "cuda" elif torch.backends.mps.is_available(): device = "mps" else: device = "cpu" print("Device Selected:", device) return device DEVICE = get_device() classes = {0: 'airplane', 1: 'automobile', 2: 'bird', 3: 'cat', 4: 'deer', 5: 'dog', 6: 'frog', 7: 'horse', 8: 'ship', 9: 'truck'} missed_df = pd.read_csv('S12_incorrect.csv') missed_df['ground_truths'] = missed_df['ground_truths'].map(classes) missed_df['predicted_vals'] = missed_df['predicted_vals'].map(classes) missed_df = missed_df.sample(frac=1) model = Model() model.load_state_dict(torch.load('S12_model.pth', map_location=DEVICE), strict=False) model.eval() transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.25, 0.25, 0.25]) ]) inv_transform = transforms.Normalize(mean=[-2, -2, -2], std=[4, 4, 4]) grad_cams = [GradCAM(model=model, target_layers=[model.network[i]], use_cuda=(DEVICE == 'cuda')) for i in range(4)] def get_gradcam_image(input_tensor, label, target_layer): grad_cam = grad_cams[target_layer] targets = [ClassifierOutputTarget(label)] grayscale_cam = grad_cam(input_tensor=input_tensor, targets=targets) grayscale_cam = grayscale_cam[0, :] return grayscale_cam def image_classifier(input_image, top_classes=3, show_cam=True, target_layers=[2, 3], transparency=0.7): input_ = transform(input_image).unsqueeze(0) output = model(input_) output = F.softmax(output.flatten(), dim=-1) confidences = [(classes[i], float(output[i])) for i in range(10)] confidences.sort(key=lambda x: x[1], reverse=True) confidences = OrderedDict(confidences[:top_classes]) label = torch.argmax(output).item() outputs = list() if show_cam: for layer in target_layers: grayscale_cam = get_gradcam_image(input_, label, layer) output_image = show_cam_on_image(input_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency) outputs.append((output_image, f"Layer {layer - 4}")) else: outputs.append((input_image, "Input")) return outputs, confidences demo1 = gr.Interface( fn=image_classifier, inputs=[ gr.Image(shape=(32, 32), label="Input Image", value='examples/cat.jpg'), gr.Slider(1, 10, value=3, step=1, label="Top Classes", info="How many top classes do you want to view?"), gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see Class Activation Maps?"), gr.CheckboxGroup(["-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Network Layers", type='index', info="Which layer CAMs do you want to visualize?",), gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1, info="Set Transparency of CAMs") ], outputs=[gr.Gallery(label="Output Images", columns=2, rows=2), gr.Label(label='Top Classes')], examples=[[f'examples/{k}.jpg'] for k in classes.values()] ) def show_incorrect(num_examples=20, show_cam=True, target_layer=-2, transparency=0.7): result = list() for index, row in missed_df.iterrows(): image = np.asarray(Image.open(f'missed_examples/{index}.jpg')) output_images, confidences = image_classifier(image, top_classes=1, show_cam=show_cam, target_layers=[4 + target_layer], transparency=transparency) truth = row['ground_truths'] predicted = list(confidences)[0] if truth != predicted: result.append((output_images[0][0], f"{row['ground_truths']} / {predicted}")) if len(result) >= num_examples: break return result demo2 = gr.Interface( fn=show_incorrect, inputs=[ gr.Number(value=20, minimum=1, maximum=100, label="No. of Examples", precision=0, info="How many misclassified examples do you want to view? (1 - 100)"), gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see Class Activation Maps?"), gr.Slider(-4, -1, value=-2, step=1, label="Network Layer", info="Which layer CAM do you want to visualize?"), gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1, info="Set Transparency of CAMs"), ], outputs=[gr.Gallery(label="Missclassified Images (Truth / Predicted)", columns=5)] ) demo = gr.TabbedInterface([demo1, demo2], ["Examples", "Misclassified Examples"]) demo.launch()