Spaces:
Sleeping
Sleeping
Commit
·
c976bd4
1
Parent(s):
375ca58
Upload 4 files
Browse files- S12_incorrect.csv +742 -0
- app.py +94 -0
- requirements.txt +15 -0
S12_incorrect.csv
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
indices,ground_truths,predicted_vals
|
2 |
+
24,5,4
|
3 |
+
35,2,3
|
4 |
+
58,4,5
|
5 |
+
59,6,3
|
6 |
+
61,3,5
|
7 |
+
86,2,7
|
8 |
+
118,2,6
|
9 |
+
143,3,5
|
10 |
+
147,2,5
|
11 |
+
158,5,3
|
12 |
+
169,0,8
|
13 |
+
178,5,2
|
14 |
+
188,4,2
|
15 |
+
226,6,0
|
16 |
+
237,0,9
|
17 |
+
275,5,3
|
18 |
+
277,3,2
|
19 |
+
308,1,9
|
20 |
+
313,0,2
|
21 |
+
376,0,9
|
22 |
+
378,0,8
|
23 |
+
384,2,5
|
24 |
+
394,9,1
|
25 |
+
422,0,8
|
26 |
+
426,3,6
|
27 |
+
428,0,6
|
28 |
+
456,3,4
|
29 |
+
470,3,5
|
30 |
+
483,5,3
|
31 |
+
497,2,5
|
32 |
+
508,9,1
|
33 |
+
531,0,3
|
34 |
+
537,2,6
|
35 |
+
551,5,3
|
36 |
+
567,7,3
|
37 |
+
577,9,8
|
38 |
+
598,5,3
|
39 |
+
618,2,3
|
40 |
+
642,0,2
|
41 |
+
655,2,4
|
42 |
+
665,8,0
|
43 |
+
672,6,2
|
44 |
+
679,5,3
|
45 |
+
683,8,0
|
46 |
+
711,8,0
|
47 |
+
725,2,0
|
48 |
+
727,3,0
|
49 |
+
731,2,0
|
50 |
+
739,3,5
|
51 |
+
751,2,0
|
52 |
+
770,6,4
|
53 |
+
771,1,8
|
54 |
+
776,2,3
|
55 |
+
779,5,6
|
56 |
+
793,4,5
|
57 |
+
799,2,4
|
58 |
+
810,5,2
|
59 |
+
811,3,2
|
60 |
+
828,5,4
|
61 |
+
845,3,2
|
62 |
+
850,7,5
|
63 |
+
863,3,5
|
64 |
+
878,3,4
|
65 |
+
882,3,0
|
66 |
+
888,0,8
|
67 |
+
893,6,3
|
68 |
+
948,3,4
|
69 |
+
972,2,6
|
70 |
+
982,0,4
|
71 |
+
997,1,9
|
72 |
+
1040,7,5
|
73 |
+
1042,5,2
|
74 |
+
1057,7,5
|
75 |
+
1066,9,1
|
76 |
+
1072,0,8
|
77 |
+
1074,3,6
|
78 |
+
1088,3,5
|
79 |
+
1090,0,8
|
80 |
+
1095,2,6
|
81 |
+
1100,7,5
|
82 |
+
1118,4,7
|
83 |
+
1126,2,0
|
84 |
+
1129,3,5
|
85 |
+
1131,1,9
|
86 |
+
1137,0,9
|
87 |
+
1147,6,9
|
88 |
+
1163,3,5
|
89 |
+
1177,9,1
|
90 |
+
1224,7,4
|
91 |
+
1227,3,5
|
92 |
+
1230,5,3
|
93 |
+
1265,9,1
|
94 |
+
1292,4,3
|
95 |
+
1304,4,8
|
96 |
+
1325,2,4
|
97 |
+
1334,3,2
|
98 |
+
1346,3,5
|
99 |
+
1391,7,5
|
100 |
+
1393,4,2
|
101 |
+
1394,6,5
|
102 |
+
1416,3,5
|
103 |
+
1442,3,5
|
104 |
+
1445,3,4
|
105 |
+
1461,0,9
|
106 |
+
1470,7,3
|
107 |
+
1492,9,1
|
108 |
+
1494,7,3
|
109 |
+
1495,2,0
|
110 |
+
1501,2,6
|
111 |
+
1503,4,3
|
112 |
+
1506,5,7
|
113 |
+
1536,5,3
|
114 |
+
1552,3,5
|
115 |
+
1580,6,2
|
116 |
+
1620,5,8
|
117 |
+
1628,4,7
|
118 |
+
1644,2,3
|
119 |
+
1684,1,8
|
120 |
+
1685,8,2
|
121 |
+
1718,0,8
|
122 |
+
1723,2,5
|
123 |
+
1727,9,1
|
124 |
+
1731,5,3
|
125 |
+
1732,9,1
|
126 |
+
1734,9,1
|
127 |
+
1741,4,5
|
128 |
+
1746,2,0
|
129 |
+
1779,3,5
|
130 |
+
1803,2,3
|
131 |
+
1804,5,0
|
132 |
+
1812,5,3
|
133 |
+
1823,0,2
|
134 |
+
1830,3,5
|
135 |
+
1845,7,4
|
136 |
+
1858,4,7
|
137 |
+
1862,5,4
|
138 |
+
1884,7,5
|
139 |
+
1885,5,3
|
140 |
+
1886,8,2
|
141 |
+
1895,8,2
|
142 |
+
1897,8,0
|
143 |
+
1909,3,4
|
144 |
+
1935,6,2
|
145 |
+
1938,8,0
|
146 |
+
1939,6,7
|
147 |
+
1945,4,7
|
148 |
+
1957,3,5
|
149 |
+
1969,1,9
|
150 |
+
1983,8,2
|
151 |
+
2001,5,4
|
152 |
+
2010,7,2
|
153 |
+
2034,3,4
|
154 |
+
2036,5,3
|
155 |
+
2059,9,8
|
156 |
+
2061,5,3
|
157 |
+
2067,7,4
|
158 |
+
2078,2,6
|
159 |
+
2111,9,1
|
160 |
+
2128,4,6
|
161 |
+
2157,3,5
|
162 |
+
2161,5,3
|
163 |
+
2165,2,0
|
164 |
+
2172,5,2
|
165 |
+
2175,3,5
|
166 |
+
2187,5,3
|
167 |
+
2216,2,3
|
168 |
+
2226,2,6
|
169 |
+
2232,0,3
|
170 |
+
2248,0,8
|
171 |
+
2251,6,3
|
172 |
+
2253,3,5
|
173 |
+
2270,2,4
|
174 |
+
2271,9,0
|
175 |
+
2293,8,1
|
176 |
+
2299,6,3
|
177 |
+
2300,3,0
|
178 |
+
2350,3,0
|
179 |
+
2362,3,4
|
180 |
+
2363,2,6
|
181 |
+
2379,0,8
|
182 |
+
2386,4,3
|
183 |
+
2405,3,6
|
184 |
+
2409,4,2
|
185 |
+
2413,4,6
|
186 |
+
2442,4,3
|
187 |
+
2447,6,2
|
188 |
+
2472,5,3
|
189 |
+
2473,0,8
|
190 |
+
2495,9,8
|
191 |
+
2511,8,1
|
192 |
+
2525,5,2
|
193 |
+
2532,0,1
|
194 |
+
2533,8,9
|
195 |
+
2535,0,8
|
196 |
+
2542,2,0
|
197 |
+
2580,6,3
|
198 |
+
2586,7,3
|
199 |
+
2590,5,0
|
200 |
+
2592,2,7
|
201 |
+
2597,2,3
|
202 |
+
2634,1,9
|
203 |
+
2650,5,0
|
204 |
+
2675,2,6
|
205 |
+
2705,8,0
|
206 |
+
2719,4,3
|
207 |
+
2729,5,3
|
208 |
+
2770,7,3
|
209 |
+
2779,3,5
|
210 |
+
2785,4,5
|
211 |
+
2798,3,5
|
212 |
+
2804,3,5
|
213 |
+
2831,3,0
|
214 |
+
2843,1,8
|
215 |
+
2844,4,3
|
216 |
+
2845,5,2
|
217 |
+
2854,9,1
|
218 |
+
2895,7,5
|
219 |
+
2912,2,6
|
220 |
+
2923,3,5
|
221 |
+
2937,3,5
|
222 |
+
2940,3,0
|
223 |
+
2948,5,4
|
224 |
+
2958,0,8
|
225 |
+
2960,9,0
|
226 |
+
3013,3,5
|
227 |
+
3019,5,3
|
228 |
+
3025,2,6
|
229 |
+
3026,5,7
|
230 |
+
3032,2,6
|
231 |
+
3049,3,5
|
232 |
+
3051,8,2
|
233 |
+
3052,3,6
|
234 |
+
3059,5,3
|
235 |
+
3068,2,0
|
236 |
+
3075,6,3
|
237 |
+
3083,5,3
|
238 |
+
3094,2,0
|
239 |
+
3095,4,6
|
240 |
+
3107,5,3
|
241 |
+
3115,5,3
|
242 |
+
3150,1,9
|
243 |
+
3158,0,8
|
244 |
+
3180,3,5
|
245 |
+
3183,3,5
|
246 |
+
3192,5,4
|
247 |
+
3202,5,3
|
248 |
+
3231,3,5
|
249 |
+
3236,5,3
|
250 |
+
3301,8,2
|
251 |
+
3342,0,8
|
252 |
+
3354,3,5
|
253 |
+
3359,7,3
|
254 |
+
3390,3,5
|
255 |
+
3400,6,0
|
256 |
+
3412,0,3
|
257 |
+
3416,7,4
|
258 |
+
3439,4,6
|
259 |
+
3443,4,2
|
260 |
+
3444,0,2
|
261 |
+
3450,9,1
|
262 |
+
3459,9,8
|
263 |
+
3496,5,3
|
264 |
+
3514,2,7
|
265 |
+
3524,5,4
|
266 |
+
3550,0,4
|
267 |
+
3560,1,9
|
268 |
+
3574,5,3
|
269 |
+
3584,3,5
|
270 |
+
3594,3,8
|
271 |
+
3596,2,4
|
272 |
+
3600,4,3
|
273 |
+
3601,0,7
|
274 |
+
3607,3,2
|
275 |
+
3615,6,0
|
276 |
+
3653,8,0
|
277 |
+
3658,2,4
|
278 |
+
3669,5,3
|
279 |
+
3696,4,3
|
280 |
+
3704,5,4
|
281 |
+
3708,4,3
|
282 |
+
3716,3,6
|
283 |
+
3726,5,3
|
284 |
+
3728,2,4
|
285 |
+
3735,5,3
|
286 |
+
3753,4,6
|
287 |
+
3774,5,3
|
288 |
+
3779,3,0
|
289 |
+
3785,6,2
|
290 |
+
3789,9,1
|
291 |
+
3799,3,5
|
292 |
+
3801,2,0
|
293 |
+
3821,8,3
|
294 |
+
3828,1,0
|
295 |
+
3887,2,4
|
296 |
+
3899,6,2
|
297 |
+
3957,9,0
|
298 |
+
3977,3,6
|
299 |
+
3980,9,0
|
300 |
+
3995,7,3
|
301 |
+
3996,6,2
|
302 |
+
4000,8,7
|
303 |
+
4003,2,0
|
304 |
+
4012,3,5
|
305 |
+
4013,1,9
|
306 |
+
4036,7,0
|
307 |
+
4051,5,3
|
308 |
+
4054,7,0
|
309 |
+
4055,1,0
|
310 |
+
4071,3,2
|
311 |
+
4101,2,0
|
312 |
+
4106,3,4
|
313 |
+
4112,4,5
|
314 |
+
4125,8,0
|
315 |
+
4135,1,0
|
316 |
+
4137,4,3
|
317 |
+
4139,5,0
|
318 |
+
4140,5,3
|
319 |
+
4152,5,3
|
320 |
+
4169,3,5
|
321 |
+
4190,3,5
|
322 |
+
4244,2,7
|
323 |
+
4251,8,0
|
324 |
+
4255,9,6
|
325 |
+
4276,9,1
|
326 |
+
4302,2,5
|
327 |
+
4309,7,5
|
328 |
+
4315,6,0
|
329 |
+
4404,3,4
|
330 |
+
4409,8,1
|
331 |
+
4423,6,2
|
332 |
+
4446,0,8
|
333 |
+
4463,5,2
|
334 |
+
4483,2,6
|
335 |
+
4485,3,7
|
336 |
+
4526,3,5
|
337 |
+
4545,3,4
|
338 |
+
4546,2,0
|
339 |
+
4574,3,4
|
340 |
+
4590,9,0
|
341 |
+
4599,8,1
|
342 |
+
4606,0,3
|
343 |
+
4614,3,5
|
344 |
+
4618,3,6
|
345 |
+
4628,5,7
|
346 |
+
4630,2,6
|
347 |
+
4652,3,5
|
348 |
+
4669,6,4
|
349 |
+
4710,3,7
|
350 |
+
4729,2,3
|
351 |
+
4740,5,3
|
352 |
+
4744,6,0
|
353 |
+
4748,0,3
|
354 |
+
4749,2,3
|
355 |
+
4754,3,8
|
356 |
+
4760,3,0
|
357 |
+
4776,3,5
|
358 |
+
4784,0,8
|
359 |
+
4786,6,3
|
360 |
+
4794,4,2
|
361 |
+
4795,5,3
|
362 |
+
4862,3,0
|
363 |
+
4887,5,3
|
364 |
+
4892,7,4
|
365 |
+
4906,5,3
|
366 |
+
4917,5,3
|
367 |
+
4921,5,6
|
368 |
+
4931,9,1
|
369 |
+
4942,5,8
|
370 |
+
4964,5,4
|
371 |
+
4965,3,4
|
372 |
+
4970,2,3
|
373 |
+
4995,2,3
|
374 |
+
4996,3,5
|
375 |
+
5006,7,2
|
376 |
+
5068,4,5
|
377 |
+
5098,5,2
|
378 |
+
5117,7,3
|
379 |
+
5119,5,0
|
380 |
+
5134,5,3
|
381 |
+
5151,9,3
|
382 |
+
5162,7,0
|
383 |
+
5176,3,9
|
384 |
+
5183,4,3
|
385 |
+
5187,4,5
|
386 |
+
5193,4,2
|
387 |
+
5206,3,5
|
388 |
+
5211,7,4
|
389 |
+
5218,3,5
|
390 |
+
5224,0,3
|
391 |
+
5229,5,3
|
392 |
+
5238,2,0
|
393 |
+
5279,0,9
|
394 |
+
5290,3,7
|
395 |
+
5292,4,7
|
396 |
+
5324,2,4
|
397 |
+
5330,7,5
|
398 |
+
5340,3,4
|
399 |
+
5369,4,6
|
400 |
+
5388,6,3
|
401 |
+
5398,8,0
|
402 |
+
5410,3,5
|
403 |
+
5416,9,1
|
404 |
+
5417,4,3
|
405 |
+
5426,5,3
|
406 |
+
5433,3,5
|
407 |
+
5454,0,2
|
408 |
+
5455,9,1
|
409 |
+
5458,3,6
|
410 |
+
5468,5,3
|
411 |
+
5511,3,6
|
412 |
+
5537,2,3
|
413 |
+
5548,8,0
|
414 |
+
5565,3,6
|
415 |
+
5582,4,3
|
416 |
+
5603,5,4
|
417 |
+
5607,6,0
|
418 |
+
5609,5,3
|
419 |
+
5628,8,1
|
420 |
+
5632,3,5
|
421 |
+
5642,5,4
|
422 |
+
5659,2,6
|
423 |
+
5708,2,5
|
424 |
+
5709,2,4
|
425 |
+
5718,1,8
|
426 |
+
5730,5,3
|
427 |
+
5745,5,3
|
428 |
+
5747,8,0
|
429 |
+
5749,5,3
|
430 |
+
5794,7,0
|
431 |
+
5808,5,3
|
432 |
+
5830,5,3
|
433 |
+
5835,3,5
|
434 |
+
5856,3,5
|
435 |
+
5859,2,3
|
436 |
+
5862,2,3
|
437 |
+
5870,7,4
|
438 |
+
5881,3,5
|
439 |
+
5886,2,4
|
440 |
+
5908,3,6
|
441 |
+
5910,2,5
|
442 |
+
5915,5,3
|
443 |
+
5924,4,2
|
444 |
+
5927,6,2
|
445 |
+
5960,2,6
|
446 |
+
5987,3,7
|
447 |
+
5991,3,5
|
448 |
+
5992,4,7
|
449 |
+
6008,3,0
|
450 |
+
6014,5,4
|
451 |
+
6025,6,3
|
452 |
+
6028,8,2
|
453 |
+
6051,4,7
|
454 |
+
6063,6,4
|
455 |
+
6068,5,3
|
456 |
+
6070,8,9
|
457 |
+
6083,2,3
|
458 |
+
6127,5,2
|
459 |
+
6144,7,5
|
460 |
+
6145,2,5
|
461 |
+
6146,0,9
|
462 |
+
6151,7,6
|
463 |
+
6160,2,0
|
464 |
+
6162,0,9
|
465 |
+
6174,3,5
|
466 |
+
6180,0,8
|
467 |
+
6202,3,2
|
468 |
+
6210,4,6
|
469 |
+
6243,4,6
|
470 |
+
6257,5,2
|
471 |
+
6283,3,5
|
472 |
+
6305,6,3
|
473 |
+
6382,4,3
|
474 |
+
6396,4,6
|
475 |
+
6401,4,7
|
476 |
+
6423,5,4
|
477 |
+
6439,3,4
|
478 |
+
6446,4,2
|
479 |
+
6466,8,0
|
480 |
+
6480,0,8
|
481 |
+
6498,4,6
|
482 |
+
6499,7,3
|
483 |
+
6522,9,1
|
484 |
+
6545,9,8
|
485 |
+
6559,2,4
|
486 |
+
6562,5,3
|
487 |
+
6588,0,8
|
488 |
+
6596,3,2
|
489 |
+
6653,0,2
|
490 |
+
6669,5,4
|
491 |
+
6709,3,5
|
492 |
+
6729,0,7
|
493 |
+
6741,9,0
|
494 |
+
6748,0,6
|
495 |
+
6750,4,3
|
496 |
+
6753,4,2
|
497 |
+
6759,1,9
|
498 |
+
6783,3,2
|
499 |
+
6792,3,9
|
500 |
+
6859,3,1
|
501 |
+
6861,8,0
|
502 |
+
6876,7,9
|
503 |
+
6901,2,9
|
504 |
+
6912,3,5
|
505 |
+
6942,3,2
|
506 |
+
6962,7,4
|
507 |
+
6969,2,6
|
508 |
+
6970,0,2
|
509 |
+
6973,3,5
|
510 |
+
6979,5,4
|
511 |
+
6980,0,8
|
512 |
+
6994,3,4
|
513 |
+
7000,2,8
|
514 |
+
7002,3,4
|
515 |
+
7004,3,7
|
516 |
+
7005,1,9
|
517 |
+
7035,1,9
|
518 |
+
7037,7,5
|
519 |
+
7040,7,0
|
520 |
+
7068,2,0
|
521 |
+
7090,2,5
|
522 |
+
7099,3,5
|
523 |
+
7107,2,6
|
524 |
+
7112,2,0
|
525 |
+
7143,4,2
|
526 |
+
7150,3,6
|
527 |
+
7168,5,3
|
528 |
+
7214,3,5
|
529 |
+
7217,8,6
|
530 |
+
7228,3,2
|
531 |
+
7265,5,7
|
532 |
+
7274,1,9
|
533 |
+
7311,1,9
|
534 |
+
7367,3,5
|
535 |
+
7384,3,5
|
536 |
+
7395,2,3
|
537 |
+
7398,5,2
|
538 |
+
7399,3,5
|
539 |
+
7400,3,5
|
540 |
+
7408,4,5
|
541 |
+
7411,5,3
|
542 |
+
7414,8,0
|
543 |
+
7420,3,5
|
544 |
+
7444,9,1
|
545 |
+
7496,3,4
|
546 |
+
7509,3,5
|
547 |
+
7519,2,8
|
548 |
+
7524,3,8
|
549 |
+
7545,5,3
|
550 |
+
7556,2,0
|
551 |
+
7559,8,1
|
552 |
+
7561,2,3
|
553 |
+
7562,2,3
|
554 |
+
7590,2,4
|
555 |
+
7600,8,1
|
556 |
+
7605,2,6
|
557 |
+
7617,2,0
|
558 |
+
7620,5,3
|
559 |
+
7644,3,5
|
560 |
+
7657,2,5
|
561 |
+
7685,9,0
|
562 |
+
7705,7,5
|
563 |
+
7711,6,2
|
564 |
+
7744,4,8
|
565 |
+
7760,2,0
|
566 |
+
7761,2,3
|
567 |
+
7763,4,2
|
568 |
+
7784,7,2
|
569 |
+
7792,9,1
|
570 |
+
7797,3,6
|
571 |
+
7815,0,2
|
572 |
+
7816,0,4
|
573 |
+
7827,3,5
|
574 |
+
7839,3,4
|
575 |
+
7852,5,7
|
576 |
+
7853,3,2
|
577 |
+
7881,3,4
|
578 |
+
7892,1,9
|
579 |
+
7924,3,5
|
580 |
+
7941,5,2
|
581 |
+
7947,2,3
|
582 |
+
7958,5,3
|
583 |
+
7967,9,1
|
584 |
+
7983,6,8
|
585 |
+
8014,2,4
|
586 |
+
8030,2,0
|
587 |
+
8033,3,5
|
588 |
+
8046,8,9
|
589 |
+
8058,4,7
|
590 |
+
8084,5,3
|
591 |
+
8115,5,3
|
592 |
+
8119,6,2
|
593 |
+
8131,3,6
|
594 |
+
8166,2,6
|
595 |
+
8198,4,0
|
596 |
+
8209,2,4
|
597 |
+
8236,5,2
|
598 |
+
8245,3,5
|
599 |
+
8254,8,0
|
600 |
+
8266,5,3
|
601 |
+
8269,8,0
|
602 |
+
8281,3,5
|
603 |
+
8295,3,0
|
604 |
+
8300,5,3
|
605 |
+
8305,4,3
|
606 |
+
8314,6,3
|
607 |
+
8317,5,3
|
608 |
+
8324,3,5
|
609 |
+
8362,3,5
|
610 |
+
8363,2,6
|
611 |
+
8420,3,6
|
612 |
+
8428,5,6
|
613 |
+
8433,3,6
|
614 |
+
8451,5,7
|
615 |
+
8457,2,4
|
616 |
+
8473,2,4
|
617 |
+
8480,2,6
|
618 |
+
8490,3,5
|
619 |
+
8507,8,0
|
620 |
+
8514,7,3
|
621 |
+
8521,9,8
|
622 |
+
8529,0,9
|
623 |
+
8536,1,9
|
624 |
+
8542,2,6
|
625 |
+
8548,3,4
|
626 |
+
8573,6,0
|
627 |
+
8576,2,0
|
628 |
+
8577,3,6
|
629 |
+
8578,2,5
|
630 |
+
8598,3,2
|
631 |
+
8629,7,4
|
632 |
+
8633,3,8
|
633 |
+
8644,8,0
|
634 |
+
8650,2,5
|
635 |
+
8671,4,6
|
636 |
+
8699,4,5
|
637 |
+
8723,5,4
|
638 |
+
8727,9,0
|
639 |
+
8728,6,5
|
640 |
+
8735,3,2
|
641 |
+
8743,0,8
|
642 |
+
8757,8,0
|
643 |
+
8773,6,2
|
644 |
+
8778,3,0
|
645 |
+
8779,7,5
|
646 |
+
8803,3,5
|
647 |
+
8827,2,5
|
648 |
+
8840,2,3
|
649 |
+
8847,5,3
|
650 |
+
8848,3,7
|
651 |
+
8854,4,8
|
652 |
+
8858,6,4
|
653 |
+
8898,7,0
|
654 |
+
8901,5,7
|
655 |
+
8928,4,2
|
656 |
+
8930,3,8
|
657 |
+
8932,6,2
|
658 |
+
8941,0,3
|
659 |
+
8943,7,5
|
660 |
+
8958,6,2
|
661 |
+
8976,7,2
|
662 |
+
8977,0,8
|
663 |
+
8983,3,4
|
664 |
+
8985,9,0
|
665 |
+
8993,0,9
|
666 |
+
9026,9,0
|
667 |
+
9031,0,8
|
668 |
+
9034,2,4
|
669 |
+
9039,2,6
|
670 |
+
9067,9,1
|
671 |
+
9080,3,5
|
672 |
+
9082,2,3
|
673 |
+
9090,2,4
|
674 |
+
9105,8,0
|
675 |
+
9107,5,4
|
676 |
+
9132,2,6
|
677 |
+
9145,1,9
|
678 |
+
9148,3,5
|
679 |
+
9157,3,5
|
680 |
+
9190,3,4
|
681 |
+
9209,9,1
|
682 |
+
9216,6,3
|
683 |
+
9218,3,5
|
684 |
+
9223,1,9
|
685 |
+
9225,5,8
|
686 |
+
9227,1,9
|
687 |
+
9231,7,2
|
688 |
+
9254,7,5
|
689 |
+
9260,5,3
|
690 |
+
9294,6,3
|
691 |
+
9305,5,7
|
692 |
+
9319,3,5
|
693 |
+
9336,3,5
|
694 |
+
9360,5,3
|
695 |
+
9369,5,4
|
696 |
+
9375,3,5
|
697 |
+
9385,7,3
|
698 |
+
9386,4,2
|
699 |
+
9414,5,3
|
700 |
+
9431,3,5
|
701 |
+
9497,3,6
|
702 |
+
9501,6,0
|
703 |
+
9503,2,4
|
704 |
+
9505,3,5
|
705 |
+
9506,4,2
|
706 |
+
9518,9,1
|
707 |
+
9522,3,2
|
708 |
+
9535,1,9
|
709 |
+
9563,1,5
|
710 |
+
9587,7,5
|
711 |
+
9616,5,3
|
712 |
+
9625,2,0
|
713 |
+
9633,0,3
|
714 |
+
9641,6,3
|
715 |
+
9643,9,0
|
716 |
+
9657,5,3
|
717 |
+
9665,3,5
|
718 |
+
9704,2,3
|
719 |
+
9707,5,7
|
720 |
+
9729,4,6
|
721 |
+
9734,4,7
|
722 |
+
9750,2,3
|
723 |
+
9753,3,2
|
724 |
+
9786,6,1
|
725 |
+
9787,8,0
|
726 |
+
9805,2,0
|
727 |
+
9812,3,8
|
728 |
+
9817,9,1
|
729 |
+
9819,3,5
|
730 |
+
9832,2,5
|
731 |
+
9840,4,7
|
732 |
+
9842,6,4
|
733 |
+
9853,5,6
|
734 |
+
9857,0,1
|
735 |
+
9884,9,1
|
736 |
+
9901,3,6
|
737 |
+
9910,4,7
|
738 |
+
9949,3,2
|
739 |
+
9960,2,0
|
740 |
+
9968,3,5
|
741 |
+
9982,2,6
|
742 |
+
9989,2,4
|
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from collections import OrderedDict
|
8 |
+
from torchvision import transforms
|
9 |
+
from pytorch_grad_cam import GradCAM
|
10 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
11 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
12 |
+
|
13 |
+
from models.custom_resnet import Model
|
14 |
+
from datasets import CIFAR10
|
15 |
+
|
16 |
+
cifar10 = CIFAR10(normalize=False, shuffle=False, augment=False)
|
17 |
+
_ = cifar10.test_data
|
18 |
+
|
19 |
+
missed_df = pd.read_csv('S12_incorrect.csv')
|
20 |
+
missed_df['ground_truths'] = missed_df['ground_truths'].map(cifar10.classes)
|
21 |
+
missed_df['predicted_vals'] = missed_df['predicted_vals'].map(cifar10.classes)
|
22 |
+
missed_df = missed_df.sample(frac=1)
|
23 |
+
|
24 |
+
model = Model(cifar10)
|
25 |
+
model.load_state_dict(torch.load('S12_model.pth', map_location='mps'))
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
transform = transforms.Compose([
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.25, 0.25, 0.25])
|
31 |
+
])
|
32 |
+
|
33 |
+
inv_transform = transforms.Normalize(mean=[-2, -2, -2], std=[4, 4, 4])
|
34 |
+
|
35 |
+
|
36 |
+
def image_classifier(input_image, top_classes=3, show_cam=True, target_layer=-1, transparency=0.5):
|
37 |
+
input = transform(input_image).unsqueeze(0)
|
38 |
+
|
39 |
+
output = model(input)
|
40 |
+
output = F.softmax(output.flatten(), dim=-1)
|
41 |
+
|
42 |
+
confidences = [(cifar10.classes[i], float(output[i])) for i in range(10)]
|
43 |
+
confidences.sort(key=lambda x: x[1], reverse=True)
|
44 |
+
confidences = OrderedDict(confidences[:top_classes])
|
45 |
+
|
46 |
+
label = torch.argmax(output).item()
|
47 |
+
target_layer = [model.network[4 + target_layer]]
|
48 |
+
grad_cam = GradCAM(model=model, target_layers=target_layer, use_cuda=False)
|
49 |
+
targets = [ClassifierOutputTarget(label)]
|
50 |
+
grayscale_cam = grad_cam(input_tensor=input, targets=targets)
|
51 |
+
grayscale_cam = grayscale_cam[0, :]
|
52 |
+
output_image = show_cam_on_image(input_image/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
53 |
+
|
54 |
+
return output_image if show_cam else input_image, confidences
|
55 |
+
|
56 |
+
|
57 |
+
demo1 = gr.Interface(
|
58 |
+
fn=image_classifier,
|
59 |
+
inputs=[
|
60 |
+
gr.Image(shape=(32, 32), label="Input Image", value='examples/cat.jpg'),
|
61 |
+
gr.Slider(1, 10, value = 3, step=1, label="Number of Top Classes"),
|
62 |
+
gr.Checkbox(label="Show GradCAM?", value=True),
|
63 |
+
gr.Slider(-4, -1, value = -1, step=1, label="Which Layer?"),
|
64 |
+
gr.Slider(0, 1, value = 0.7, label="Transparncy", step=0.1)
|
65 |
+
],
|
66 |
+
outputs=[gr.Image(shape=(32, 32), label="Output Image"),
|
67 |
+
gr.Label(label='Top Classes')],
|
68 |
+
examples=[[f'examples/{k}.jpg'] for k in cifar10.classes.values()]
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
def show_incorrect(num_examples=10, show_cam=True, target_layer=-1, transparency=0.5):
|
73 |
+
result = list()
|
74 |
+
for index, row in missed_df.head(num_examples).iterrows():
|
75 |
+
image = np.asarray(Image.open(f'missed_examples/{index}.jpg'))
|
76 |
+
output_image, confidence = image_classifier(image, show_cam=show_cam, target_layer=target_layer, transparency=transparency)
|
77 |
+
predicted = list(confidence)[0]
|
78 |
+
result.append((output_image, f"{row['ground_truths']} / {predicted}"))
|
79 |
+
return result
|
80 |
+
|
81 |
+
|
82 |
+
demo2 = gr.Interface(
|
83 |
+
fn=show_incorrect,
|
84 |
+
inputs=[
|
85 |
+
gr.Number(value=10, minimum=1, maximum=len(missed_df), label="No. of missclassified Examples", precision=0),
|
86 |
+
gr.Checkbox(label="Show GradCAM?", value=True),
|
87 |
+
gr.Slider(-4, -1, value = -1, step=1, label="Which Layer?"),
|
88 |
+
gr.Slider(0, 1, value = 0.7, label="Transparncy", step=0.1),
|
89 |
+
],
|
90 |
+
outputs=[gr.Gallery(label="Missclassified Images (Truth / Predicted)", columns=4)]
|
91 |
+
)
|
92 |
+
|
93 |
+
demo = gr.TabbedInterface([demo1, demo2], ["Examples", "Misclassified Examples"])
|
94 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchinfo
|
4 |
+
tqdm
|
5 |
+
matplotlib
|
6 |
+
albumentations
|
7 |
+
numpy
|
8 |
+
opencv-python
|
9 |
+
torch-lr-finder
|
10 |
+
grad-cam
|
11 |
+
pytorch-lightning
|
12 |
+
torchmetrics
|
13 |
+
pandas
|
14 |
+
gradio
|
15 |
+
Pillow
|