swapniel99 commited on
Commit
3b7d632
·
1 Parent(s): 171905d

update requirements

Browse files
Files changed (3) hide show
  1. app.py +0 -1
  2. requirements.txt +0 -8
  3. utils/misc.py +0 -50
app.py CHANGED
@@ -11,7 +11,6 @@ from pytorch_grad_cam.utils.image import show_cam_on_image
11
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
12
 
13
  from models.custom_resnet import Model
14
-
15
  from utils import get_device
16
 
17
  DEVICE = get_device()
 
11
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
12
 
13
  from models.custom_resnet import Model
 
14
  from utils import get_device
15
 
16
  DEVICE = get_device()
requirements.txt CHANGED
@@ -1,15 +1,7 @@
1
  torch
2
  torchvision
3
- torchinfo
4
- tqdm
5
- matplotlib
6
- albumentations
7
  numpy
8
- opencv-python
9
- torch-lr-finder
10
  grad-cam
11
- pytorch-lightning
12
- torchmetrics
13
  pandas
14
  gradio
15
  Pillow
 
1
  torch
2
  torchvision
 
 
 
 
3
  numpy
 
 
4
  grad-cam
 
 
5
  pandas
6
  gradio
7
  Pillow
utils/misc.py CHANGED
@@ -1,9 +1,4 @@
1
  import torch
2
- import torchinfo
3
- from matplotlib import pyplot as plt
4
- from pytorch_grad_cam import GradCAM
5
- from pytorch_grad_cam.utils.image import show_cam_on_image
6
- from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
7
 
8
  SEED = 42
9
  DEVICE = None
@@ -22,48 +17,3 @@ def get_device():
22
  DEVICE = "cpu"
23
  print("Device Selected:", DEVICE)
24
  return DEVICE
25
-
26
-
27
- def set_seed(seed=SEED):
28
- torch.manual_seed(seed)
29
- if get_device() == 'cuda':
30
- torch.cuda.manual_seed(seed)
31
-
32
-
33
- def plot_examples(images, labels, figsize=None, n=20):
34
- _ = plt.figure(figsize=figsize)
35
-
36
- for i in range(n):
37
- plt.subplot(4, n//4, i + 1)
38
- plt.tight_layout()
39
- image = images[i]
40
- plt.imshow(image, cmap='gray')
41
- label = labels[i]
42
- plt.title(str(label))
43
- plt.xticks([])
44
- plt.yticks([])
45
-
46
-
47
- def get_incorrect_preds(prediction, labels):
48
- prediction = prediction.argmax(dim=1)
49
- indices = prediction.ne(labels).nonzero().reshape(-1).tolist()
50
- return indices, prediction[indices].tolist(), labels[indices].tolist()
51
-
52
-
53
- def get_cam_visualisation(model, dataset, input_tensor, label, target_layer, use_cuda=False):
54
- grad_cam = GradCAM(model=model, target_layers=[target_layer], use_cuda=use_cuda)
55
-
56
- targets = [ClassifierOutputTarget(label)]
57
-
58
- grayscale_cam = grad_cam(input_tensor=input_tensor.unsqueeze(0), targets=targets)
59
- # In this example grayscale_cam has only one image in the batch:
60
- grayscale_cam = grayscale_cam[0, :]
61
-
62
- output = show_cam_on_image(dataset.show_transform(input_tensor).cpu().numpy(), grayscale_cam,
63
- use_rgb=True)
64
- return output
65
-
66
-
67
- def model_summary(model, input_size=None):
68
- return torchinfo.summary(model, input_size=input_size, depth=5,
69
- col_names=["input_size", "output_size", "num_params", "params_percent"])
 
1
  import torch
 
 
 
 
 
2
 
3
  SEED = 42
4
  DEVICE = None
 
17
  DEVICE = "cpu"
18
  print("Device Selected:", DEVICE)
19
  return DEVICE