cifar10 / app.py
swapniel99's picture
update default transparency
078d10a
raw
history blame
5.04 kB
import torch
import pandas as pd
import numpy as np
import gradio as gr
from PIL import Image
from torch.nn import functional as F
from collections import OrderedDict
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from custom_resnet import Model
def get_device():
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
print("Device Selected:", device)
return device
DEVICE = get_device()
classes = {0: 'airplane',
1: 'automobile',
2: 'bird',
3: 'cat',
4: 'deer',
5: 'dog',
6: 'frog',
7: 'horse',
8: 'ship',
9: 'truck'}
missed_df = pd.read_csv('S12_incorrect.csv')
missed_df['ground_truths'] = missed_df['ground_truths'].map(classes)
missed_df['predicted_vals'] = missed_df['predicted_vals'].map(classes)
missed_df = missed_df.sample(frac=1)
model = Model()
model.load_state_dict(torch.load('S12_model.pth', map_location=DEVICE), strict=False)
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.25, 0.25, 0.25])
])
inv_transform = transforms.Normalize(mean=[-2, -2, -2], std=[4, 4, 4])
grad_cams = [GradCAM(model=model, target_layers=[model.network[i]], use_cuda=(DEVICE == 'cuda')) for i in range(4)]
def get_gradcam_image(input_tensor, label, target_layer):
grad_cam = grad_cams[target_layer]
targets = [ClassifierOutputTarget(label)]
grayscale_cam = grad_cam(input_tensor=input_tensor, targets=targets)
grayscale_cam = grayscale_cam[0, :]
return grayscale_cam
def image_classifier(input_image, top_classes=3, show_cam=True, target_layers=[2, 3], transparency=0.7):
input_ = transform(input_image).unsqueeze(0)
output = model(input_)
output = F.softmax(output.flatten(), dim=-1)
confidences = [(classes[i], float(output[i])) for i in range(10)]
confidences.sort(key=lambda x: x[1], reverse=True)
confidences = OrderedDict(confidences[:top_classes])
label = torch.argmax(output).item()
outputs = list()
if show_cam:
for layer in target_layers:
grayscale_cam = get_gradcam_image(input_, label, layer)
output_image = show_cam_on_image(input_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency)
outputs.append((output_image, f"Layer {layer - 4}"))
else:
outputs.append((input_image, "Input"))
return outputs, confidences
demo1 = gr.Interface(
fn=image_classifier,
inputs=[
gr.Image(shape=(32, 32), label="Input Image", value='examples/cat.jpg'),
gr.Slider(1, 10, value=3, step=1, label="Top Classes",
info="How many top classes do you want to view?"),
gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see Class Activation Maps?"),
gr.CheckboxGroup(["-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Network Layers", type='index',
info="Which layer CAMs do you want to visualize?",),
gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1,
info="Set Transparency of CAMs")
],
outputs=[gr.Gallery(label="Output Images", columns=2, rows=2), gr.Label(label='Top Classes')],
examples=[[f'examples/{k}.jpg'] for k in classes.values()]
)
def show_incorrect(num_examples=20, show_cam=True, target_layer=-2, transparency=0.7):
result = list()
for index, row in missed_df.iterrows():
image = np.asarray(Image.open(f'missed_examples/{index}.jpg'))
output_images, confidences = image_classifier(image, top_classes=1, show_cam=show_cam,
target_layers=[4 + target_layer], transparency=transparency)
truth = row['ground_truths']
predicted = list(confidences)[0]
if truth != predicted:
result.append((output_images[0][0], f"{row['ground_truths']} / {predicted}"))
if len(result) >= num_examples:
break
return result
demo2 = gr.Interface(
fn=show_incorrect,
inputs=[
gr.Number(value=20, minimum=1, maximum=100, label="No. of Examples", precision=0,
info="How many misclassified examples do you want to view? (1 - 100)"),
gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see Class Activation Maps?"),
gr.Slider(-4, -1, value=-2, step=1, label="Network Layer", info="Which layer CAM do you want to visualize?"),
gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1, info="Set Transparency of CAMs"),
],
outputs=[gr.Gallery(label="Missclassified Images (Truth / Predicted)", columns=5)]
)
demo = gr.TabbedInterface([demo1, demo2], ["Examples", "Misclassified Examples"])
demo.launch()