File size: 2,129 Bytes
375ca58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46305a2
 
375ca58
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from torch import nn


class ConvLayer(nn.Module):
    def __init__(self, input_c, output_c, bias=False, stride=1, padding=1, pool=False, dropout=0.):
        super(ConvLayer, self).__init__()

        layers = list()
        layers.append(
            nn.Conv2d(input_c, output_c, kernel_size=3, bias=bias, stride=stride, padding=padding,
                      padding_mode='replicate')
        )
        if pool:
            layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
        layers.append(nn.BatchNorm2d(output_c))
        layers.append(nn.ReLU())
        if dropout > 0:
            layers.append(nn.Dropout(dropout))

        self.all_layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.all_layers(x)


class CustomLayer(nn.Module):
    def __init__(self, input_c, output_c, pool=True, residue=2, dropout=0.):
        super(CustomLayer, self).__init__()

        self.pool_block = ConvLayer(input_c, output_c, pool=pool, dropout=dropout)
        self.res_block = None
        if residue > 0:
            layers = list()
            for i in range(0, residue):
                layers.append(ConvLayer(output_c, output_c, pool=False, dropout=dropout))
            self.res_block = nn.Sequential(*layers)

    def forward(self, x):
        x = self.pool_block(x)
        if self.res_block is not None:
            x_ = x
            x = self.res_block(x)
            # += operator causes inplace errors in pytorch if done right after relu.
            x = x + x_
        return x


class Model(nn.Module):
    def __init__(self, dropout=0.05):
        super(Model, self).__init__()

        self.network = nn.Sequential(
            CustomLayer(3, 64, pool=False, residue=0, dropout=dropout),
            CustomLayer(64, 128, pool=True, residue=2, dropout=dropout),
            CustomLayer(128, 256, pool=True, residue=0, dropout=dropout),
            CustomLayer(256, 512, pool=True, residue=2, dropout=dropout),
            nn.MaxPool2d(kernel_size=4, stride=4),
            nn.Flatten(),
            nn.Linear(512, 10)
        )

    def forward(self, x):
        return self.network(x)