swaleha19's picture
Upload 13 files
6c482f9 verified
raw
history blame
9.85 kB
"""
Main Integration Module for Agent Tuning Optimization Framework
This module provides functionality for integrating all components of the framework
and running end-to-end experiments.
"""
import os
import json
import argparse
from typing import List, Dict, Any, Union, Optional, Tuple
from models.llm_interface import LLMInterface
from data.trajectory_data import Trajectory, TrajectoryDataset, create_synthetic_dataset
from training.negative_samples import create_negative_sample_generator
from training.synthetic_trajectories import create_synthetic_trajectory_generator
from training.agent_tuner import create_agent_tuner
from evaluation.evaluators import create_agent_evaluator
def run_experiment(
experiment_config: Dict[str, Any],
output_dir: str
) -> Dict[str, Any]:
"""
Run an end-to-end experiment with the framework.
Args:
experiment_config: Experiment configuration
output_dir: Directory to save results
Returns:
Dictionary of experiment results
"""
print(f"Starting experiment: {experiment_config['name']}")
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Save experiment configuration
with open(f"{output_dir}/experiment_config.json", "w") as f:
json.dump(experiment_config, f, indent=2)
# Initialize LLM interface
print("Initializing LLM interface...")
llm_config = experiment_config.get("llm", {})
llm_interface = LLMInterface(
model_name=llm_config.get("model_name", "gpt2"),
model_type=llm_config.get("model_type", "causal"),
device=llm_config.get("device", "cpu"),
max_length=llm_config.get("max_length", 512),
temperature=llm_config.get("temperature", 0.7)
)
# Load or create dataset
print("Preparing dataset...")
dataset_config = experiment_config.get("dataset", {})
if dataset_config.get("path"):
# Load existing dataset
dataset = TrajectoryDataset(dataset_config.get("name", "experiment_dataset"))
dataset.load_from_json(dataset_config["path"])
else:
# Create synthetic dataset
dataset = create_synthetic_dataset(dataset_config.get("num_trajectories", 20))
print(f"Dataset loaded with {len(dataset.trajectories)} trajectories")
# Generate negative samples
print("Generating negative samples...")
negative_config = experiment_config.get("negative_samples", {})
if negative_config.get("enabled", True):
negative_generator = create_negative_sample_generator(
negative_config.get("method", "response_degradation")
)
positive_trajectories = dataset.get_trajectories(positive_only=True)
negative_trajectories = negative_generator.batch_generate(
positive_trajectories,
**negative_config.get("params", {})
)
# Add negative trajectories to dataset
for trajectory in negative_trajectories:
dataset.add_trajectory(trajectory)
print(f"Added {len(negative_trajectories)} negative trajectories")
# Generate synthetic trajectories
print("Generating synthetic trajectories...")
synthetic_config = experiment_config.get("synthetic_trajectories", {})
if synthetic_config.get("enabled", True):
synthetic_generator = create_synthetic_trajectory_generator(
synthetic_config.get("method", "template"),
llm_interface if synthetic_config.get("method") in ["llm", "hybrid"] else None
)
# Generate from task descriptions
task_descriptions = [t.task_description for t in dataset.get_trajectories(positive_only=True)]
task_descriptions = list(set(task_descriptions)) # Remove duplicates
synthetic_trajectories = synthetic_generator.batch_generate(
task_descriptions,
**synthetic_config.get("params", {})
)
# Add synthetic trajectories to dataset
for trajectory in synthetic_trajectories:
dataset.add_trajectory(trajectory)
print(f"Added {len(synthetic_trajectories)} synthetic trajectories")
# Save the enhanced dataset
dataset.save_to_json(f"{output_dir}/enhanced_dataset.json")
# Analyze dataset
dataset_stats = dataset.analyze_dataset()
with open(f"{output_dir}/dataset_stats.json", "w") as f:
json.dump(dataset_stats, f, indent=2)
# Split dataset for training and evaluation
all_trajectories = dataset.get_trajectories()
split_idx = int(len(all_trajectories) * 0.8) # 80% for training
train_trajectories = all_trajectories[:split_idx]
eval_trajectories = all_trajectories[split_idx:]
print(f"Split dataset: {len(train_trajectories)} for training, {len(eval_trajectories)} for evaluation")
# Tune agent
print("Tuning agent...")
tuning_config = experiment_config.get("tuning", {})
tuner = create_agent_tuner(tuning_config.get("method", "supervised"))
tuned_model, tuning_metrics = tuner.tune(
model_name=llm_config.get("model_name", "gpt2"),
trajectories=train_trajectories,
output_dir=f"{output_dir}/tuned_model",
**tuning_config.get("params", {})
)
# Save tuning metrics
with open(f"{output_dir}/tuning_metrics.json", "w") as f:
# Convert any non-serializable values to strings
serializable_metrics = {}
for k, v in tuning_metrics.items():
if isinstance(v, (int, float, str, bool, list, dict)) or v is None:
serializable_metrics[k] = v
else:
serializable_metrics[k] = str(v)
json.dump(serializable_metrics, f, indent=2)
# Create tuned model interface
tuned_llm_interface = LLMInterface(
model_name=f"{output_dir}/tuned_model",
model_type=llm_config.get("model_type", "causal"),
device=llm_config.get("device", "cpu"),
max_length=llm_config.get("max_length", 512),
temperature=llm_config.get("temperature", 0.7)
)
# Evaluate agent
print("Evaluating agent...")
eval_config = experiment_config.get("evaluation", {})
evaluator = create_agent_evaluator(eval_config.get("method", "quality"))
eval_results = evaluator.evaluate(
llm_interface=tuned_llm_interface,
test_trajectories=eval_trajectories,
**eval_config.get("params", {})
)
# Visualize evaluation results
evaluator.visualize_results(
results=eval_results,
output_dir=f"{output_dir}/evaluation"
)
# Save evaluation results
with open(f"{output_dir}/evaluation_results.json", "w") as f:
# Create a simplified version without large data
simplified_results = {}
if "aggregated" in eval_results:
simplified_results["aggregated"] = eval_results["aggregated"]
if "metrics" in eval_results:
# Include only essential metrics
simplified_results["metrics"] = [
{k: v for k, v in m.items() if k not in ["generated_responses"]}
for m in eval_results["metrics"]
]
json.dump(simplified_results, f, indent=2)
# Comparative evaluation (if configured)
if eval_config.get("comparative", {}).get("enabled", False):
print("Performing comparative evaluation...")
# Create baseline model interface
baseline_llm_interface = LLMInterface(
model_name=llm_config.get("model_name", "gpt2"),
model_type=llm_config.get("model_type", "causal"),
device=llm_config.get("device", "cpu"),
max_length=llm_config.get("max_length", 512),
temperature=llm_config.get("temperature", 0.7)
)
# Create comparative evaluator
comparative_evaluator = create_agent_evaluator("comparative")
# Evaluate and compare
comparative_results = comparative_evaluator.evaluate(
llm_interfaces={
"baseline": baseline_llm_interface,
"tuned": tuned_llm_interface
},
test_trajectories=eval_trajectories,
**eval_config.get("comparative", {}).get("params", {})
)
# Visualize comparative results
comparative_evaluator.visualize_results(
results=comparative_results,
output_dir=f"{output_dir}/comparative"
)
# Save comparative results
with open(f"{output_dir}/comparative_results.json", "w") as f:
# Create a simplified version
simplified_comparative = {
"comparative": comparative_results.get("comparative", {})
}
json.dump(simplified_comparative, f, indent=2)
print(f"Experiment completed. Results saved to {output_dir}")
return {
"dataset_stats": dataset_stats,
"tuning_metrics": tuning_metrics,
"evaluation_results": eval_results
}
def main():
"""Main function for running the framework from command line."""
parser = argparse.ArgumentParser(description="Agent Tuning Optimization Framework")
parser.add_argument("--config", type=str, required=True, help="Path to experiment configuration file")
parser.add_argument("--output", type=str, default="./experiment_results", help="Directory to save results")
args = parser.parse_args()
# Load experiment configuration
with open(args.config, "r") as f:
experiment_config = json.load(f)
# Run experiment
run_experiment(experiment_config, args.output)
if __name__ == "__main__":
main()