agent_tuning_framework / agent_tuner.py
swaleha19's picture
Upload 13 files
6c482f9 verified
raw
history blame
16.1 kB
"""
Agent Tuning Module for Agent Tuning Optimization Framework
This module provides functionality for efficiently tuning large language models
into specialized agents using a combination of positive examples, negative examples,
and synthetically generated interaction trajectories.
"""
import os
import torch
import numpy as np
from typing import List, Dict, Any, Union, Optional, Tuple
from tqdm import tqdm
from transformers import (
Trainer, TrainingArguments,
DataCollatorForLanguageModeling,
AutoModelForCausalLM, AutoTokenizer
)
from datasets import Dataset
from data.trajectory_data import Trajectory, TrajectoryDataset
from models.llm_interface import LLMInterface
class AgentTuner:
"""Base class for agent tuning methods."""
def __init__(self, name: str):
"""
Initialize the agent tuner.
Args:
name: Name of the tuning method
"""
self.name = name
def tune(
self,
model_name: str,
trajectories: List[Trajectory],
**kwargs
) -> Tuple[Any, Dict[str, Any]]:
"""
Tune a model into a specialized agent.
Args:
model_name: Name of the base model
trajectories: List of training trajectories
**kwargs: Additional tuning parameters
Returns:
Tuple of (tuned_model, training_metrics)
"""
raise NotImplementedError("Subclasses must implement this method")
def save_model(self, model: Any, path: str) -> None:
"""
Save the tuned model.
Args:
model: Tuned model
path: Path to save the model
"""
raise NotImplementedError("Subclasses must implement this method")
def load_model(self, path: str) -> Any:
"""
Load a tuned model.
Args:
path: Path to the model
Returns:
Loaded model
"""
raise NotImplementedError("Subclasses must implement this method")
class SupervisedFineTuner(AgentTuner):
"""Tune agents using supervised fine-tuning."""
def __init__(self):
"""Initialize the supervised fine-tuner."""
super().__init__("supervised_fine_tuning")
def tune(
self,
model_name: str,
trajectories: List[Trajectory],
output_dir: str = "./tuned_model",
num_train_epochs: int = 3,
learning_rate: float = 5e-5,
batch_size: int = 4,
gradient_accumulation_steps: int = 4,
max_seq_length: int = 512,
format_type: str = "interleaved",
positive_weight: float = 0.8,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
**kwargs
) -> Tuple[Any, Dict[str, Any]]:
"""
Tune a model using supervised fine-tuning.
Args:
model_name: Name of the base model
trajectories: List of training trajectories
output_dir: Directory to save the model
num_train_epochs: Number of training epochs
learning_rate: Learning rate
batch_size: Batch size
gradient_accumulation_steps: Gradient accumulation steps
max_seq_length: Maximum sequence length
format_type: Format type for trajectories
positive_weight: Weight for positive examples
device: Device to use for training
**kwargs: Additional tuning parameters
Returns:
Tuple of (tuned_model, training_metrics)
"""
print(f"Starting supervised fine-tuning of {model_name}")
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Ensure the tokenizer has a pad token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Prepare training data
print("Preparing training data...")
# Separate positive and negative trajectories
positive_trajectories = [t for t in trajectories if t.is_positive]
negative_trajectories = [t for t in trajectories if not t.is_positive]
print(f"Found {len(positive_trajectories)} positive and {len(negative_trajectories)} negative trajectories")
# Calculate sample counts based on positive weight
total_samples = len(trajectories)
target_positive = int(total_samples * positive_weight)
target_negative = total_samples - target_positive
# Sample trajectories to achieve desired ratio
if len(positive_trajectories) > target_positive:
positive_trajectories = np.random.choice(positive_trajectories, target_positive, replace=False).tolist()
if len(negative_trajectories) > target_negative:
negative_trajectories = np.random.choice(negative_trajectories, target_negative, replace=False).tolist()
# Combine trajectories
sampled_trajectories = positive_trajectories + negative_trajectories
np.random.shuffle(sampled_trajectories)
print(f"Using {len(positive_trajectories)} positive and {len(negative_trajectories)} negative trajectories for training")
# Format trajectories for training
training_texts = []
for trajectory in tqdm(sampled_trajectories, desc="Formatting trajectories"):
formatted = trajectory.to_training_format(format_type)
training_texts.append(formatted)
# Tokenize training data
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_seq_length
)
# Create dataset
dataset = Dataset.from_dict({"text": training_texts})
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=["text"]
)
# Set up training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
weight_decay=0.01,
save_strategy="epoch",
save_total_limit=2,
logging_dir=f"{output_dir}/logs",
logging_steps=10,
report_to="none"
)
# Create data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator
)
# Train the model
print("Starting training...")
train_result = trainer.train()
# Save the model
print(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
# Return the model and metrics
metrics = {
"train_loss": train_result.training_loss,
"train_runtime": train_result.metrics["train_runtime"],
"samples_per_second": train_result.metrics["train_samples_per_second"],
"num_train_samples": len(tokenized_dataset)
}
return model, metrics
def save_model(self, model: Any, path: str) -> None:
"""
Save the tuned model.
Args:
model: Tuned model
path: Path to save the model
"""
model.save_pretrained(path)
def load_model(self, path: str) -> Any:
"""
Load a tuned model.
Args:
path: Path to the model
Returns:
Loaded model
"""
return AutoModelForCausalLM.from_pretrained(path)
class ParameterEfficientFineTuner(AgentTuner):
"""Tune agents using parameter-efficient fine-tuning methods."""
def __init__(self):
"""Initialize the parameter-efficient fine-tuner."""
super().__init__("parameter_efficient_fine_tuning")
def tune(
self,
model_name: str,
trajectories: List[Trajectory],
output_dir: str = "./tuned_model",
method: str = "lora", # 'lora', 'prefix', 'prompt_tuning'
num_train_epochs: int = 3,
learning_rate: float = 1e-4,
batch_size: int = 4,
gradient_accumulation_steps: int = 4,
max_seq_length: int = 512,
format_type: str = "interleaved",
positive_weight: float = 0.8,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
**kwargs
) -> Tuple[Any, Dict[str, Any]]:
"""
Tune a model using parameter-efficient methods.
Args:
model_name: Name of the base model
trajectories: List of training trajectories
output_dir: Directory to save the model
method: PEFT method to use
num_train_epochs: Number of training epochs
learning_rate: Learning rate
batch_size: Batch size
gradient_accumulation_steps: Gradient accumulation steps
max_seq_length: Maximum sequence length
format_type: Format type for trajectories
positive_weight: Weight for positive examples
device: Device to use for training
**kwargs: Additional tuning parameters
Returns:
Tuple of (tuned_model, training_metrics)
"""
try:
from peft import (
get_peft_model, LoraConfig, PrefixTuningConfig,
PromptTuningConfig, TaskType, PeftModel
)
except ImportError:
raise ImportError("PEFT library is required for parameter-efficient fine-tuning. Install it with 'pip install peft'.")
print(f"Starting parameter-efficient fine-tuning of {model_name} using {method}")
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Ensure the tokenizer has a pad token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Configure PEFT method
if method == "lora":
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"]
)
elif method == "prefix":
peft_config = PrefixTuningConfig(
task_type=TaskType.CAUSAL_LM,
num_virtual_tokens=20,
prefix_projection=True
)
elif method == "prompt_tuning":
peft_config = PromptTuningConfig(
task_type=TaskType.CAUSAL_LM,
num_virtual_tokens=20,
tokenizer_name_or_path=model_name
)
else:
raise ValueError(f"Unsupported PEFT method: {method}")
# Create PEFT model
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Prepare training data (same as SupervisedFineTuner)
print("Preparing training data...")
# Separate positive and negative trajectories
positive_trajectories = [t for t in trajectories if t.is_positive]
negative_trajectories = [t for t in trajectories if not t.is_positive]
print(f"Found {len(positive_trajectories)} positive and {len(negative_trajectories)} negative trajectories")
# Calculate sample counts based on positive weight
total_samples = len(trajectories)
target_positive = int(total_samples * positive_weight)
target_negative = total_samples - target_positive
# Sample trajectories to achieve desired ratio
if len(positive_trajectories) > target_positive:
positive_trajectories = np.random.choice(positive_trajectories, target_positive, replace=False).tolist()
if len(negative_trajectories) > target_negative:
negative_trajectories = np.random.choice(negative_trajectories, target_negative, replace=False).tolist()
# Combine trajectories
sampled_trajectories = positive_trajectories + negative_trajectories
np.random.shuffle(sampled_trajectories)
print(f"Using {len(positive_trajectories)} positive and {len(negative_trajectories)} negative trajectories for training")
# Format trajectories for training
training_texts = []
for trajectory in tqdm(sampled_trajectories, desc="Formatting trajectories"):
formatted = trajectory.to_training_format(format_type)
training_texts.append(formatted)
# Tokenize training data
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_seq_length
)
# Create dataset
dataset = Dataset.from_dict({"text": training_texts})
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=["text"]
)
# Set up training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
weight_decay=0.01,
save_strategy="epoch",
save_total_limit=2,
logging_dir=f"{output_dir}/logs",
logging_steps=10,
report_to="none"
)
# Create data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator
)
# Train the model
print("Starting training...")
train_result = trainer.train()
# Save the model
print(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
# Return the model and metrics
metrics = {
"train_loss": train_result.training_loss,
"train_runtime": train_result.metrics["train_runtime"],
"samples_per_second": train_result.metrics["train_samples_per_second"],
"num_train_samples": len(tokenized_dataset),
"peft_method": method
}
return model, metrics
def save_model(self, model: Any, path: str) -> None:
"""
Save the tuned model.
Args:
model: Tuned model
path: Path to save the model
"""
model.save_pretrained(path)
(Content truncated due to size limit. Use line ranges to read in chunks)