File size: 15,416 Bytes
6c482f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""
Trajectory Data Management Module for Agent Tuning Optimization Framework
This module provides functionality for loading, processing, and managing agent interaction
trajectories for training and evaluation purposes.
"""
import os
import json
import pandas as pd
import numpy as np
from typing import List, Dict, Any, Union, Optional, Tuple
from tqdm import tqdm
class Trajectory:
"""Class representing a single agent interaction trajectory."""
def __init__(
self,
task_description: str,
interactions: List[Dict[str, str]],
metadata: Optional[Dict[str, Any]] = None
):
"""
Initialize a trajectory.
Args:
task_description: Description of the task
interactions: List of interaction turns (each with 'user' and 'agent' keys)
metadata: Additional metadata about the trajectory
"""
self.task_description = task_description
self.interactions = interactions
self.metadata = metadata or {}
self.quality_score = self.metadata.get('quality_score', None)
self.is_positive = self.metadata.get('is_positive', True)
def to_dict(self) -> Dict[str, Any]:
"""
Convert trajectory to dictionary.
Returns:
Dictionary representation of the trajectory
"""
return {
'task_description': self.task_description,
'interactions': self.interactions,
'metadata': self.metadata
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'Trajectory':
"""
Create trajectory from dictionary.
Args:
data: Dictionary representation of the trajectory
Returns:
Trajectory instance
"""
return cls(
task_description=data['task_description'],
interactions=data['interactions'],
metadata=data.get('metadata', {})
)
def to_training_format(self, format_type: str = 'interleaved') -> str:
"""
Convert trajectory to training format.
Args:
format_type: Format type ('interleaved', 'completion', etc.)
Returns:
Formatted trajectory as string
"""
if format_type == 'interleaved':
# Format as interleaved conversation
result = f"Task: {self.task_description}\n\n"
for i, interaction in enumerate(self.interactions):
result += f"User: {interaction['user']}\n"
result += f"Agent: {interaction['agent']}\n\n"
return result.strip()
elif format_type == 'completion':
# Format as completion task (last agent response is the target)
if not self.interactions:
return ""
result = f"Task: {self.task_description}\n\n"
for i, interaction in enumerate(self.interactions[:-1]):
result += f"User: {interaction['user']}\n"
result += f"Agent: {interaction['agent']}\n\n"
# Add last user query without agent response
result += f"User: {self.interactions[-1]['user']}\n"
result += f"Agent:"
return result.strip(), self.interactions[-1]['agent'].strip()
else:
raise ValueError(f"Unsupported format type: {format_type}")
def get_quality_score(self) -> float:
"""
Get quality score for the trajectory.
Returns:
Quality score (0.0 to 1.0)
"""
if self.quality_score is not None:
return self.quality_score
# Calculate simple quality score based on response length and complexity
score = 0.0
if not self.interactions:
return score
# Average response length (normalized)
avg_length = np.mean([len(turn['agent']) for turn in self.interactions])
length_score = min(avg_length / 500, 1.0) # Normalize to max of 500 chars
# Response complexity (simple heuristic based on unique words)
all_responses = " ".join([turn['agent'] for turn in self.interactions])
unique_words = len(set(all_responses.lower().split()))
complexity_score = min(unique_words / 200, 1.0) # Normalize to max of 200 unique words
# Combine scores
score = 0.6 * length_score + 0.4 * complexity_score
# Cache the score
self.quality_score = score
self.metadata['quality_score'] = score
return score
class TrajectoryDataset:
"""Dataset for managing collections of agent interaction trajectories."""
def __init__(self, name: str):
"""
Initialize the trajectory dataset.
Args:
name: Name of the dataset
"""
self.name = name
self.trajectories: List[Trajectory] = []
self.positive_trajectories: List[Trajectory] = []
self.negative_trajectories: List[Trajectory] = []
def add_trajectory(self, trajectory: Trajectory) -> None:
"""
Add a trajectory to the dataset.
Args:
trajectory: Trajectory to add
"""
self.trajectories.append(trajectory)
# Add to positive or negative list based on metadata
if trajectory.is_positive:
self.positive_trajectories.append(trajectory)
else:
self.negative_trajectories.append(trajectory)
def load_from_json(self, file_path: str) -> None:
"""
Load trajectories from JSON file.
Args:
file_path: Path to JSON file
"""
with open(file_path, 'r') as f:
data = json.load(f)
if isinstance(data, list):
# List of trajectories
for item in data:
self.add_trajectory(Trajectory.from_dict(item))
elif isinstance(data, dict) and 'trajectories' in data:
# Dictionary with trajectories key
for item in data['trajectories']:
self.add_trajectory(Trajectory.from_dict(item))
else:
raise ValueError(f"Unsupported JSON format in {file_path}")
def save_to_json(self, file_path: str) -> None:
"""
Save trajectories to JSON file.
Args:
file_path: Path to JSON file
"""
data = {
'name': self.name,
'trajectories': [t.to_dict() for t in self.trajectories]
}
with open(file_path, 'w') as f:
json.dump(data, f, indent=2)
def get_trajectories(
self,
positive_only: bool = False,
negative_only: bool = False,
min_quality: Optional[float] = None,
max_samples: Optional[int] = None
) -> List[Trajectory]:
"""
Get trajectories based on filtering criteria.
Args:
positive_only: Whether to return only positive trajectories
negative_only: Whether to return only negative trajectories
min_quality: Minimum quality score threshold
max_samples: Maximum number of samples to return
Returns:
Filtered list of trajectories
"""
if positive_only and negative_only:
raise ValueError("Cannot set both positive_only and negative_only to True")
# Select base list
if positive_only:
trajectories = self.positive_trajectories.copy()
elif negative_only:
trajectories = self.negative_trajectories.copy()
else:
trajectories = self.trajectories.copy()
# Apply quality filter
if min_quality is not None:
trajectories = [t for t in trajectories if t.get_quality_score() >= min_quality]
# Apply max samples limit
if max_samples is not None and max_samples < len(trajectories):
trajectories = trajectories[:max_samples]
return trajectories
def get_training_examples(
self,
format_type: str = 'interleaved',
positive_ratio: float = 0.8,
min_quality: Optional[float] = 0.5,
max_samples: Optional[int] = None
) -> Union[List[str], Tuple[List[str], List[str]]]:
"""
Get formatted training examples from trajectories.
Args:
format_type: Format type ('interleaved', 'completion', etc.)
positive_ratio: Ratio of positive to total examples
min_quality: Minimum quality score threshold
max_samples: Maximum number of samples to return
Returns:
Formatted training examples (format depends on format_type)
"""
# Get positive and negative trajectories
positive = self.get_trajectories(positive_only=True, min_quality=min_quality)
negative = self.get_trajectories(negative_only=True)
# Calculate sample counts
if max_samples is not None:
pos_count = int(max_samples * positive_ratio)
neg_count = max_samples - pos_count
else:
pos_count = len(positive)
neg_count = len(negative)
# Sample trajectories
if pos_count < len(positive):
positive = np.random.choice(positive, pos_count, replace=False).tolist()
if neg_count < len(negative):
negative = np.random.choice(negative, neg_count, replace=False).tolist()
# Format trajectories
if format_type == 'interleaved':
pos_examples = [t.to_training_format(format_type) for t in positive]
neg_examples = [t.to_training_format(format_type) for t in negative]
return pos_examples + neg_examples
elif format_type == 'completion':
pos_inputs = []
pos_targets = []
for t in positive:
inp, target = t.to_training_format(format_type)
pos_inputs.append(inp)
pos_targets.append(target)
neg_inputs = []
neg_targets = []
for t in negative:
inp, target = t.to_training_format(format_type)
neg_inputs.append(inp)
neg_targets.append(target)
return pos_inputs + neg_inputs, pos_targets + neg_targets
else:
raise ValueError(f"Unsupported format type: {format_type}")
def analyze_dataset(self) -> Dict[str, Any]:
"""
Analyze the dataset and return statistics.
Returns:
Dictionary of dataset statistics
"""
if not self.trajectories:
return {
'total_trajectories': 0,
'positive_count': 0,
'negative_count': 0
}
# Basic counts
total = len(self.trajectories)
positive_count = len(self.positive_trajectories)
negative_count = len(self.negative_trajectories)
# Quality statistics
quality_scores = [t.get_quality_score() for t in self.trajectories]
avg_quality = np.mean(quality_scores)
min_quality = np.min(quality_scores)
max_quality = np.max(quality_scores)
# Interaction statistics
interaction_counts = [len(t.interactions) for t in self.trajectories]
avg_interactions = np.mean(interaction_counts)
max_interactions = np.max(interaction_counts)
# Task diversity (simple heuristic based on unique task descriptions)
unique_tasks = len(set([t.task_description for t in self.trajectories]))
return {
'total_trajectories': total,
'positive_count': positive_count,
'negative_count': negative_count,
'positive_ratio': positive_count / total if total > 0 else 0,
'avg_quality': avg_quality,
'min_quality': min_quality,
'max_quality': max_quality,
'avg_interactions': avg_interactions,
'max_interactions': max_interactions,
'unique_tasks': unique_tasks
}
def create_synthetic_dataset(num_trajectories: int = 10) -> TrajectoryDataset:
"""
Create a synthetic dataset for testing purposes.
Args:
num_trajectories: Number of trajectories to create
Returns:
Synthetic trajectory dataset
"""
dataset = TrajectoryDataset("synthetic_dataset")
# Sample task descriptions
task_descriptions = [
"Book a flight from New York to London for next week",
"Find a vegetarian restaurant near downtown",
"Schedule a meeting with the marketing team for tomorrow",
"Order a new laptop with at least 16GB RAM",
"Write a congratulatory email to a colleague who got promoted",
"Research the best electric cars available in the market",
"Create a weekly meal plan with shopping list",
"Find information about tourist attractions in Barcelona",
"Help me debug a Python script that's giving an IndexError",
"Summarize the main points from the attached research paper"
]
# Create trajectories
for i in range(num_trajectories):
# Select task
task_idx = i % len(task_descriptions)
task = task_descriptions[task_idx]
# Create interactions (2-4 turns)
num_turns = np.random.randint(2, 5)
interactions = []
for j in range(num_turns):
if j == 0:
user_msg = f"I need help with this task: {task}"
agent_msg = f"I'd be happy to help you {task.lower()}. Could you provide more details about your preferences?"
elif j == num_turns - 1:
user_msg = "That sounds good. Please proceed with the final steps."
agent_msg = f"I've completed the task to {task.lower()}. Here's a summary of what I did..."
else:
user_msg = f"I prefer options that are {['affordable', 'convenient', 'high-quality'][j % 3]}."
agent_msg = f"Based on your preference for {['affordable', 'convenient', 'high-quality'][j % 3]} options, I recommend..."
interactions.append({
'user': user_msg,
'agent': agent_msg
})
# Determine if positive or negative example
is_positive = (i % 4 != 0) # 75% positive, 25% negative
# Create metadata
metadata = {
'is_positive': is_positive,
'quality_score': np.random.uniform(0.7, 0.9) if is_positive else np.random.uniform(0.3, 0.5),
'created_at': '2025-05-21'
}
# Create and add trajectory
trajectory = Trajectory(
task_description=task,
interactions=interactions,
metadata=metadata
)
dataset.add_trajectory(trajectory)
return dataset
|