File size: 9,852 Bytes
6c482f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Main Integration Module for Agent Tuning Optimization Framework

This module provides functionality for integrating all components of the framework
and running end-to-end experiments.
"""

import os
import json
import argparse
from typing import List, Dict, Any, Union, Optional, Tuple

from models.llm_interface import LLMInterface
from data.trajectory_data import Trajectory, TrajectoryDataset, create_synthetic_dataset
from training.negative_samples import create_negative_sample_generator
from training.synthetic_trajectories import create_synthetic_trajectory_generator
from training.agent_tuner import create_agent_tuner
from evaluation.evaluators import create_agent_evaluator

def run_experiment(
    experiment_config: Dict[str, Any],
    output_dir: str
) -> Dict[str, Any]:
    """
    Run an end-to-end experiment with the framework.
    
    Args:
        experiment_config: Experiment configuration
        output_dir: Directory to save results
        
    Returns:
        Dictionary of experiment results
    """
    print(f"Starting experiment: {experiment_config['name']}")
    
    # Create output directory
    os.makedirs(output_dir, exist_ok=True)
    
    # Save experiment configuration
    with open(f"{output_dir}/experiment_config.json", "w") as f:
        json.dump(experiment_config, f, indent=2)
    
    # Initialize LLM interface
    print("Initializing LLM interface...")
    llm_config = experiment_config.get("llm", {})
    llm_interface = LLMInterface(
        model_name=llm_config.get("model_name", "gpt2"),
        model_type=llm_config.get("model_type", "causal"),
        device=llm_config.get("device", "cpu"),
        max_length=llm_config.get("max_length", 512),
        temperature=llm_config.get("temperature", 0.7)
    )
    
    # Load or create dataset
    print("Preparing dataset...")
    dataset_config = experiment_config.get("dataset", {})
    
    if dataset_config.get("path"):
        # Load existing dataset
        dataset = TrajectoryDataset(dataset_config.get("name", "experiment_dataset"))
        dataset.load_from_json(dataset_config["path"])
    else:
        # Create synthetic dataset
        dataset = create_synthetic_dataset(dataset_config.get("num_trajectories", 20))
    
    print(f"Dataset loaded with {len(dataset.trajectories)} trajectories")
    
    # Generate negative samples
    print("Generating negative samples...")
    negative_config = experiment_config.get("negative_samples", {})
    
    if negative_config.get("enabled", True):
        negative_generator = create_negative_sample_generator(
            negative_config.get("method", "response_degradation")
        )
        
        positive_trajectories = dataset.get_trajectories(positive_only=True)
        negative_trajectories = negative_generator.batch_generate(
            positive_trajectories,
            **negative_config.get("params", {})
        )
        
        # Add negative trajectories to dataset
        for trajectory in negative_trajectories:
            dataset.add_trajectory(trajectory)
        
        print(f"Added {len(negative_trajectories)} negative trajectories")
    
    # Generate synthetic trajectories
    print("Generating synthetic trajectories...")
    synthetic_config = experiment_config.get("synthetic_trajectories", {})
    
    if synthetic_config.get("enabled", True):
        synthetic_generator = create_synthetic_trajectory_generator(
            synthetic_config.get("method", "template"),
            llm_interface if synthetic_config.get("method") in ["llm", "hybrid"] else None
        )
        
        # Generate from task descriptions
        task_descriptions = [t.task_description for t in dataset.get_trajectories(positive_only=True)]
        task_descriptions = list(set(task_descriptions))  # Remove duplicates
        
        synthetic_trajectories = synthetic_generator.batch_generate(
            task_descriptions,
            **synthetic_config.get("params", {})
        )
        
        # Add synthetic trajectories to dataset
        for trajectory in synthetic_trajectories:
            dataset.add_trajectory(trajectory)
        
        print(f"Added {len(synthetic_trajectories)} synthetic trajectories")
    
    # Save the enhanced dataset
    dataset.save_to_json(f"{output_dir}/enhanced_dataset.json")
    
    # Analyze dataset
    dataset_stats = dataset.analyze_dataset()
    with open(f"{output_dir}/dataset_stats.json", "w") as f:
        json.dump(dataset_stats, f, indent=2)
    
    # Split dataset for training and evaluation
    all_trajectories = dataset.get_trajectories()
    split_idx = int(len(all_trajectories) * 0.8)  # 80% for training
    
    train_trajectories = all_trajectories[:split_idx]
    eval_trajectories = all_trajectories[split_idx:]
    
    print(f"Split dataset: {len(train_trajectories)} for training, {len(eval_trajectories)} for evaluation")
    
    # Tune agent
    print("Tuning agent...")
    tuning_config = experiment_config.get("tuning", {})
    
    tuner = create_agent_tuner(tuning_config.get("method", "supervised"))
    
    tuned_model, tuning_metrics = tuner.tune(
        model_name=llm_config.get("model_name", "gpt2"),
        trajectories=train_trajectories,
        output_dir=f"{output_dir}/tuned_model",
        **tuning_config.get("params", {})
    )
    
    # Save tuning metrics
    with open(f"{output_dir}/tuning_metrics.json", "w") as f:
        # Convert any non-serializable values to strings
        serializable_metrics = {}
        for k, v in tuning_metrics.items():
            if isinstance(v, (int, float, str, bool, list, dict)) or v is None:
                serializable_metrics[k] = v
            else:
                serializable_metrics[k] = str(v)
        
        json.dump(serializable_metrics, f, indent=2)
    
    # Create tuned model interface
    tuned_llm_interface = LLMInterface(
        model_name=f"{output_dir}/tuned_model",
        model_type=llm_config.get("model_type", "causal"),
        device=llm_config.get("device", "cpu"),
        max_length=llm_config.get("max_length", 512),
        temperature=llm_config.get("temperature", 0.7)
    )
    
    # Evaluate agent
    print("Evaluating agent...")
    eval_config = experiment_config.get("evaluation", {})
    
    evaluator = create_agent_evaluator(eval_config.get("method", "quality"))
    
    eval_results = evaluator.evaluate(
        llm_interface=tuned_llm_interface,
        test_trajectories=eval_trajectories,
        **eval_config.get("params", {})
    )
    
    # Visualize evaluation results
    evaluator.visualize_results(
        results=eval_results,
        output_dir=f"{output_dir}/evaluation"
    )
    
    # Save evaluation results
    with open(f"{output_dir}/evaluation_results.json", "w") as f:
        # Create a simplified version without large data
        simplified_results = {}
        
        if "aggregated" in eval_results:
            simplified_results["aggregated"] = eval_results["aggregated"]
        
        if "metrics" in eval_results:
            # Include only essential metrics
            simplified_results["metrics"] = [
                {k: v for k, v in m.items() if k not in ["generated_responses"]}
                for m in eval_results["metrics"]
            ]
        
        json.dump(simplified_results, f, indent=2)
    
    # Comparative evaluation (if configured)
    if eval_config.get("comparative", {}).get("enabled", False):
        print("Performing comparative evaluation...")
        
        # Create baseline model interface
        baseline_llm_interface = LLMInterface(
            model_name=llm_config.get("model_name", "gpt2"),
            model_type=llm_config.get("model_type", "causal"),
            device=llm_config.get("device", "cpu"),
            max_length=llm_config.get("max_length", 512),
            temperature=llm_config.get("temperature", 0.7)
        )
        
        # Create comparative evaluator
        comparative_evaluator = create_agent_evaluator("comparative")
        
        # Evaluate and compare
        comparative_results = comparative_evaluator.evaluate(
            llm_interfaces={
                "baseline": baseline_llm_interface,
                "tuned": tuned_llm_interface
            },
            test_trajectories=eval_trajectories,
            **eval_config.get("comparative", {}).get("params", {})
        )
        
        # Visualize comparative results
        comparative_evaluator.visualize_results(
            results=comparative_results,
            output_dir=f"{output_dir}/comparative"
        )
        
        # Save comparative results
        with open(f"{output_dir}/comparative_results.json", "w") as f:
            # Create a simplified version
            simplified_comparative = {
                "comparative": comparative_results.get("comparative", {})
            }
            
            json.dump(simplified_comparative, f, indent=2)
    
    print(f"Experiment completed. Results saved to {output_dir}")
    
    return {
        "dataset_stats": dataset_stats,
        "tuning_metrics": tuning_metrics,
        "evaluation_results": eval_results
    }

def main():
    """Main function for running the framework from command line."""
    parser = argparse.ArgumentParser(description="Agent Tuning Optimization Framework")
    parser.add_argument("--config", type=str, required=True, help="Path to experiment configuration file")
    parser.add_argument("--output", type=str, default="./experiment_results", help="Directory to save results")
    
    args = parser.parse_args()
    
    # Load experiment configuration
    with open(args.config, "r") as f:
        experiment_config = json.load(f)
    
    # Run experiment
    run_experiment(experiment_config, args.output)

if __name__ == "__main__":
    main()