Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
|
|
|
1 |
+
'''
|
2 |
+
from gradio_client import Client, file
|
3 |
+
from datasets import load_dataset
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Initialize Gradio client
|
9 |
+
client = Client("http://localhost:7861")
|
10 |
+
|
11 |
+
# Load the dataset
|
12 |
+
dataset = load_dataset("svjack/Dont_be_your_lover_Images")
|
13 |
+
|
14 |
+
# Create directories for saving images and results
|
15 |
+
os.makedirs("Dont_be_your_lover_Images_Captioned", exist_ok=True)
|
16 |
+
|
17 |
+
# Process each image in the dataset
|
18 |
+
for i, item in enumerate(tqdm(dataset["train"], desc="Processing images")):
|
19 |
+
try:
|
20 |
+
# Get the PIL Image object
|
21 |
+
pil_image = item["image"]
|
22 |
+
|
23 |
+
# Save the image locally with 000i.png format
|
24 |
+
img_filename = f"{i:04d}.png"
|
25 |
+
img_path = os.path.join("Dont_be_your_lover_Images_Captioned", img_filename)
|
26 |
+
pil_image.save(img_path)
|
27 |
+
|
28 |
+
# Process the image through the API
|
29 |
+
result = client.predict(
|
30 |
+
input_image=file(img_path),
|
31 |
+
prompt="Write a long detailed description for this image.",
|
32 |
+
temperature=0.6,
|
33 |
+
top_p=0.9,
|
34 |
+
max_new_tokens=512,
|
35 |
+
log_prompt=True,
|
36 |
+
api_name="/chat_joycaption"
|
37 |
+
)
|
38 |
+
|
39 |
+
# Save the result as a text file with the same name
|
40 |
+
result_filename = f"{i:04d}.txt"
|
41 |
+
result_path = os.path.join("Dont_be_your_lover_Images_Captioned", result_filename)
|
42 |
+
|
43 |
+
with open(result_path, "w", encoding="utf-8") as f:
|
44 |
+
f.write(str(result))
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error processing image {i}: {str(e)}")
|
48 |
+
continue
|
49 |
+
|
50 |
+
print("Processing complete!")
|
51 |
+
|
52 |
+
# Load the dataset
|
53 |
+
dataset = load_dataset("svjack/Origin_Images")
|
54 |
+
|
55 |
+
# Create directories for saving images and results
|
56 |
+
os.makedirs("Origin_Images_Captioned", exist_ok=True)
|
57 |
+
|
58 |
+
# Process each image in the dataset
|
59 |
+
for i, item in enumerate(tqdm(dataset["train"], desc="Processing images")):
|
60 |
+
try:
|
61 |
+
# Get the PIL Image object
|
62 |
+
pil_image = item["image"]
|
63 |
+
|
64 |
+
# Save the image locally with 000i.png format
|
65 |
+
img_filename = f"{i:04d}.png"
|
66 |
+
img_path = os.path.join("Origin_Images_Captioned", img_filename)
|
67 |
+
pil_image.save(img_path)
|
68 |
+
|
69 |
+
# Process the image through the API
|
70 |
+
result = client.predict(
|
71 |
+
input_image=file(img_path),
|
72 |
+
prompt="Write a long detailed description for this image.",
|
73 |
+
temperature=0.6,
|
74 |
+
top_p=0.9,
|
75 |
+
max_new_tokens=512,
|
76 |
+
log_prompt=True,
|
77 |
+
api_name="/chat_joycaption"
|
78 |
+
)
|
79 |
+
|
80 |
+
# Save the result as a text file with the same name
|
81 |
+
result_filename = f"{i:04d}.txt"
|
82 |
+
result_path = os.path.join("Origin_Images_Captioned", result_filename)
|
83 |
+
|
84 |
+
with open(result_path, "w", encoding="utf-8") as f:
|
85 |
+
f.write(str(result))
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error processing image {i}: {str(e)}")
|
89 |
+
continue
|
90 |
+
|
91 |
+
print("Processing complete!")
|
92 |
+
'''
|
93 |
+
|
94 |
import spaces
|
95 |
import gradio as gr
|
96 |
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
|