svjack commited on
Commit
aa6bec1
·
verified ·
1 Parent(s): 423d355

Create mask_sp_app.py

Browse files
Files changed (1) hide show
  1. mask_sp_app.py +453 -0
mask_sp_app.py ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers_helper.hf_login import login
2
+ import os
3
+ os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
4
+
5
+ import gradio as gr
6
+ import torch
7
+ import traceback
8
+ import einops
9
+ import safetensors.torch as sf
10
+ import numpy as np
11
+ import math
12
+ import spaces
13
+ from PIL import Image
14
+ from diffusers import AutoencoderKLHunyuanVideo
15
+ from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
16
+ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
17
+ from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
18
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
19
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
20
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
21
+ from diffusers_helper.thread_utils import AsyncStream, async_run
22
+ from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
23
+ from transformers import SiglipImageProcessor, SiglipVisionModel
24
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
25
+ from diffusers_helper.bucket_tools import find_nearest_bucket
26
+
27
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
28
+ high_vram = free_mem_gb > 60
29
+
30
+ print(f'Free VRAM {free_mem_gb} GB')
31
+ print(f'High-VRAM Mode: {high_vram}')
32
+
33
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
34
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
35
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
36
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
37
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
38
+
39
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
40
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
41
+
42
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
43
+
44
+ vae.eval()
45
+ text_encoder.eval()
46
+ text_encoder_2.eval()
47
+ image_encoder.eval()
48
+ transformer.eval()
49
+
50
+ if not high_vram:
51
+ vae.enable_slicing()
52
+ vae.enable_tiling()
53
+
54
+ transformer.high_quality_fp32_output_for_inference = True
55
+ print('transformer.high_quality_fp32_output_for_inference = True')
56
+
57
+ transformer.to(dtype=torch.bfloat16)
58
+ vae.to(dtype=torch.float16)
59
+ image_encoder.to(dtype=torch.float16)
60
+ text_encoder.to(dtype=torch.float16)
61
+ text_encoder_2.to(dtype=torch.float16)
62
+
63
+ vae.requires_grad_(False)
64
+ text_encoder.requires_grad_(False)
65
+ text_encoder_2.requires_grad_(False)
66
+ image_encoder.requires_grad_(False)
67
+ transformer.requires_grad_(False)
68
+
69
+ if not high_vram:
70
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
71
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
72
+ else:
73
+ text_encoder.to(gpu)
74
+ text_encoder_2.to(gpu)
75
+ image_encoder.to(gpu)
76
+ vae.to(gpu)
77
+ transformer.to(gpu)
78
+
79
+ stream = AsyncStream()
80
+
81
+ outputs_folder = './outputs/'
82
+ os.makedirs(outputs_folder, exist_ok=True)
83
+
84
+ examples = [
85
+ ["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
86
+ ["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
87
+ ["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."],
88
+ ]
89
+
90
+ def generate_examples(input_image, prompt):
91
+ t2v=False
92
+ n_prompt=""
93
+ seed=31337
94
+ total_second_length=5
95
+ latent_window_size=9
96
+ steps=25
97
+ cfg=1.0
98
+ gs=10.0
99
+ rs=0.0
100
+ gpu_memory_preservation=6
101
+ use_teacache=True
102
+ mp4_crf=16
103
+
104
+ global stream
105
+
106
+ if t2v:
107
+ default_height, default_width = 640, 640
108
+ input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
109
+ print("No input image provided. Using a blank white image.")
110
+
111
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
112
+
113
+ stream = AsyncStream()
114
+
115
+ async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
116
+
117
+ output_filename = None
118
+
119
+ while True:
120
+ flag, data = stream.output_queue.next()
121
+
122
+ if flag == 'file':
123
+ output_filename = data
124
+ yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
125
+
126
+ if flag == 'progress':
127
+ preview, desc, html = data
128
+ yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
129
+
130
+ if flag == 'end':
131
+ yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
132
+ break
133
+
134
+ @torch.no_grad()
135
+ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
136
+ total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
137
+ total_latent_sections = int(max(round(total_latent_sections), 1))
138
+
139
+ job_id = generate_timestamp()
140
+
141
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
142
+
143
+ try:
144
+ if not high_vram:
145
+ unload_complete_models(
146
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
147
+ )
148
+
149
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
150
+
151
+ if not high_vram:
152
+ fake_diffusers_current_device(text_encoder, gpu)
153
+ load_model_as_complete(text_encoder_2, target_device=gpu)
154
+
155
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
156
+
157
+ if cfg == 1:
158
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
159
+ else:
160
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
161
+
162
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
163
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
164
+
165
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
166
+
167
+ H, W, C = input_image.shape
168
+ height, width = find_nearest_bucket(H, W, resolution=640)
169
+ input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
170
+
171
+ Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
172
+
173
+ input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
174
+ input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
175
+
176
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
177
+
178
+ if not high_vram:
179
+ load_model_as_complete(vae, target_device=gpu)
180
+
181
+ start_latent = vae_encode(input_image_pt, vae)
182
+
183
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
184
+
185
+ if not high_vram:
186
+ load_model_as_complete(image_encoder, target_device=gpu)
187
+
188
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
189
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
190
+
191
+ llama_vec = llama_vec.to(transformer.dtype)
192
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
193
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
194
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
195
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
196
+
197
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
198
+
199
+ rnd = torch.Generator("cpu").manual_seed(seed)
200
+
201
+ history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
202
+ history_pixels = None
203
+
204
+ history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
205
+ total_generated_latent_frames = 1
206
+
207
+ for section_index in range(total_latent_sections):
208
+ if stream.input_queue.top() == 'end':
209
+ stream.output_queue.push(('end', None))
210
+ return
211
+
212
+ print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
213
+
214
+ if not high_vram:
215
+ unload_complete_models()
216
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
217
+
218
+ if use_teacache:
219
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
220
+ else:
221
+ transformer.initialize_teacache(enable_teacache=False)
222
+
223
+ def callback(d):
224
+ preview = d['denoised']
225
+ preview = vae_decode_fake(preview)
226
+
227
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
228
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
229
+
230
+ if stream.input_queue.top() == 'end':
231
+ stream.output_queue.push(('end', None))
232
+ raise KeyboardInterrupt('User ends the task.')
233
+
234
+ current_step = d['i'] + 1
235
+ percentage = int(100.0 * current_step / steps)
236
+ hint = f'Sampling {current_step}/{steps}'
237
+ desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
238
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
239
+ return
240
+
241
+ indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
242
+ clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
243
+ clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
244
+
245
+ clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
246
+ clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
247
+
248
+ generated_latents = sample_hunyuan(
249
+ transformer=transformer,
250
+ sampler='unipc',
251
+ width=width,
252
+ height=height,
253
+ frames=latent_window_size * 4 - 3,
254
+ real_guidance_scale=cfg,
255
+ distilled_guidance_scale=gs,
256
+ guidance_rescale=rs,
257
+ num_inference_steps=steps,
258
+ generator=rnd,
259
+ prompt_embeds=llama_vec,
260
+ prompt_embeds_mask=llama_attention_mask,
261
+ prompt_poolers=clip_l_pooler,
262
+ negative_prompt_embeds=llama_vec_n,
263
+ negative_prompt_embeds_mask=llama_attention_mask_n,
264
+ negative_prompt_poolers=clip_l_pooler_n,
265
+ device=gpu,
266
+ dtype=torch.bfloat16,
267
+ image_embeddings=image_encoder_last_hidden_state,
268
+ latent_indices=latent_indices,
269
+ clean_latents=clean_latents,
270
+ clean_latent_indices=clean_latent_indices,
271
+ clean_latents_2x=clean_latents_2x,
272
+ clean_latent_2x_indices=clean_latent_2x_indices,
273
+ clean_latents_4x=clean_latents_4x,
274
+ clean_latent_4x_indices=clean_latent_4x_indices,
275
+ callback=callback,
276
+ )
277
+
278
+ total_generated_latent_frames += int(generated_latents.shape[2])
279
+ history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
280
+
281
+ if not high_vram:
282
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
283
+ load_model_as_complete(vae, target_device=gpu)
284
+
285
+ real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
286
+
287
+ if history_pixels is None:
288
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
289
+ else:
290
+ section_latent_frames = latent_window_size * 2
291
+ overlapped_frames = latent_window_size * 4 - 3
292
+
293
+ current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
294
+ history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
295
+
296
+ if not high_vram:
297
+ unload_complete_models()
298
+
299
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
300
+
301
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
302
+
303
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
304
+
305
+ stream.output_queue.push(('file', output_filename))
306
+ except:
307
+ traceback.print_exc()
308
+
309
+ if not high_vram:
310
+ unload_complete_models(
311
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
312
+ )
313
+
314
+ stream.output_queue.push(('end', None))
315
+ return
316
+
317
+ def get_duration(input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
318
+ return total_second_length * 60
319
+
320
+ @spaces.GPU(duration=get_duration)
321
+ def process(input_image, input_mask, prompt,
322
+ t2v=False,
323
+ n_prompt="",
324
+ seed=31337,
325
+ total_second_length=5,
326
+ latent_window_size=9,
327
+ steps=25,
328
+ cfg=1.0,
329
+ gs=10.0,
330
+ rs=0.0,
331
+ gpu_memory_preservation=6,
332
+ use_teacache=True,
333
+ mp4_crf=16
334
+ ):
335
+ global stream
336
+
337
+ if t2v:
338
+ default_height, default_width = 640, 640
339
+ input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
340
+ print("No input image provided. Using a blank white image.")
341
+ else:
342
+ # 处理分别上传的图像和mask
343
+ rgb_uint8 = input_image.astype(np.uint8)
344
+
345
+ from PIL import Image
346
+ if len(input_mask.shape) >= 3:
347
+ input_mask = np.asarray(Image.fromarray(input_mask).convert("L"))
348
+ print("input_mask shape: ", input_mask.shape)
349
+
350
+ mask_uint8 = input_mask.astype(np.uint8)
351
+
352
+ # 创建白色背景
353
+ h, w = rgb_uint8.shape[:2]
354
+ background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
355
+
356
+ # 归一化mask
357
+ alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
358
+ alpha_mask_float32 = np.stack([alpha_normalized_float32] * 3, axis=2)
359
+
360
+ # alpha混合
361
+ blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
362
+ background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
363
+
364
+ input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
365
+
366
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
367
+
368
+ stream = AsyncStream()
369
+
370
+ async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
371
+
372
+ output_filename = None
373
+
374
+ while True:
375
+ flag, data = stream.output_queue.next()
376
+
377
+ if flag == 'file':
378
+ output_filename = data
379
+ yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
380
+
381
+ if flag == 'progress':
382
+ preview, desc, html = data
383
+ yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
384
+
385
+ if flag == 'end':
386
+ yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
387
+ break
388
+
389
+ def end_process():
390
+ stream.input_queue.push('end')
391
+
392
+ quick_prompts = [
393
+ 'The girl dances gracefully, with clear movements, full of charm.',
394
+ 'A character doing some simple body movements.',
395
+ ]
396
+ quick_prompts = [[x] for x in quick_prompts]
397
+
398
+ css = make_progress_bar_css()
399
+ block = gr.Blocks(css=css).queue()
400
+ with block:
401
+ gr.Markdown('# FramePack-F1')
402
+ gr.Markdown(f"""### Video diffusion, but feels like image diffusion
403
+ *FramePack F1 - a FramePack model that only predicts future frames from history frames*
404
+ ### *beta* FramePack Fill 🖋️- draw a mask over the input image to inpaint the video output
405
+ adapted from the official code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) 🙌🏻
406
+ """)
407
+ with gr.Row():
408
+ with gr.Column():
409
+ # 修改为分别上传图像和mask
410
+ input_image = gr.Image(label="Image", type="numpy", height=320)
411
+ input_mask = gr.Image(label="Mask", type="numpy", height=320)
412
+ prompt = gr.Textbox(label="Prompt", value='')
413
+ t2v = gr.Checkbox(label="do text-to-video", value=False)
414
+ example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
415
+ example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
416
+
417
+ with gr.Row():
418
+ start_button = gr.Button(value="Start Generation")
419
+ end_button = gr.Button(value="End Generation", interactive=False)
420
+
421
+ total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
422
+ with gr.Group():
423
+ with gr.Accordion("Advanced settings", open=False):
424
+ use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
425
+
426
+ n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
427
+ seed = gr.Number(label="Seed", value=31337, precision=0)
428
+
429
+ latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)
430
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
431
+
432
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)
433
+ gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
434
+ rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)
435
+
436
+ gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
437
+
438
+ mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs.")
439
+
440
+ with gr.Column():
441
+ preview_image = gr.Image(label="Next Latents", height=200, visible=False)
442
+ result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
443
+ progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
444
+ progress_bar = gr.HTML('', elem_classes='no-generating-animation')
445
+
446
+ gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
447
+
448
+ # 更新输入参数列表,包含input_mask
449
+ ips = [input_image, input_mask, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
450
+ start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
451
+ end_button.click(fn=end_process)
452
+
453
+ block.launch(server_name = "0.0.0.0" ,share=True)