FramePack-F1 / mask_sp_app.py
svjack's picture
Update mask_sp_app.py
25c2038 verified
'''
import os
from datasets import load_dataset
from PIL import Image
from gradio_client import Client, handle_file
from shutil import copy2
# 1. 加载HuggingFace数据集
dataset = load_dataset("svjack/Xiang_guitar_DreamO_Images")
# 2. 创建本地目录结构
os.makedirs("input_images", exist_ok=True)
os.makedirs("xiang_output_videos", exist_ok=True)
# 3. 初始化Gradio客户端
client = Client("http://localhost:7860/")
# 5. 定义生成空白图片的函数
def generate_blank_image(image_path, output_path, color='black'):
with Image.open(image_path) as img:
width, height = img.size
fill_color = (255, 255, 255) if color.lower() == 'white' else (0, 0, 0)
new_img = Image.new('RGB', (width, height), fill_color)
new_img.save(output_path)
# 4. 定义处理函数
def process_image(idx, image):
try:
# 保存原始图片
input_path = f"input_images/{idx:04d}.png"
image.save(input_path)
# 生成空白掩码图片
mask_path = f"input_images/{idx:04d}_mask.png"
generate_blank_image(input_path, mask_path, color='white')
# 调用API生成视频
result = client.predict(
input_image=handle_file(input_path),
input_mask=handle_file(mask_path),
prompt="a man playing guitar",
t2v=False,
n_prompt="",
seed=31337,
total_second_length=5,
latent_window_size=9,
steps=25,
cfg=1,
gs=10,
rs=0,
gpu_memory_preservation=4,
use_teacache=False,
mp4_crf=16,
api_name="/process"
)
# 复制并重命名视频文件
output_filename = f"{idx:04d}.mp4"
copy2(result[0]["video"], os.path.join("xiang_output_videos", output_filename))
print(f"已处理第{idx}张图片,生成视频: {output_filename}")
except Exception as e:
print(f"处理第{idx}张图片时出错: {str(e)}")
# 6. 遍历数据集并处理每张图片
for idx, item in enumerate(dataset["train"]):
process_image(idx, item["image"])
print("所有图片处理完成!")
'''
from diffusers_helper.hf_login import login
import os
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
examples = [
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."],
]
def generate_examples(input_image, prompt):
t2v=False
n_prompt=""
seed=31337
total_second_length=5
latent_window_size=9
steps=25
cfg=1.0
gs=10.0
rs=0.0
gpu_memory_preservation=6
use_teacache=True
mp4_crf=16
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'end':
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
total_generated_latent_frames = 1
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
stream.output_queue.push(('end', None))
return
def get_duration(input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(input_image, input_mask, prompt,
t2v=False,
n_prompt="",
seed=31337,
total_second_length=5,
latent_window_size=9,
steps=25,
cfg=1.0,
gs=10.0,
rs=0.0,
gpu_memory_preservation=6,
use_teacache=True,
mp4_crf=16
):
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
else:
# 处理分别上传的图像和mask
rgb_uint8 = input_image.astype(np.uint8)
from PIL import Image
if len(input_mask.shape) >= 3:
input_mask = np.asarray(Image.fromarray(input_mask).convert("L"))
print("input_mask shape: ", input_mask.shape)
mask_uint8 = input_mask.astype(np.uint8)
# 创建白色背景
h, w = rgb_uint8.shape[:2]
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
# 归一化mask
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
alpha_mask_float32 = np.stack([alpha_normalized_float32] * 3, axis=2)
# alpha混合
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'end':
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
gr.Markdown('# FramePack-F1')
gr.Markdown(f"""### Video diffusion, but feels like image diffusion
*FramePack F1 - a FramePack model that only predicts future frames from history frames*
### *beta* FramePack Fill 🖋️- draw a mask over the input image to inpaint the video output
adapted from the official code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) 🙌🏻
""")
with gr.Row():
with gr.Column():
# 修改为分别上传图像和mask
input_image = gr.Image(label="Image", type="numpy", height=320)
input_mask = gr.Image(label="Mask", type="numpy", height=320)
prompt = gr.Textbox(label="Prompt", value='')
t2v = gr.Checkbox(label="do text-to-video", value=False)
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
with gr.Group():
with gr.Accordion("Advanced settings", open=False):
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
seed = gr.Number(label="Seed", value=31337, precision=0)
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs.")
with gr.Column():
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
# 更新输入参数列表,包含input_mask
ips = [input_image, input_mask, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
end_button.click(fn=end_process)
block.launch(server_name = "0.0.0.0" ,share=True)