svjack commited on
Commit
03ec813
·
verified ·
1 Parent(s): e6b2245

Upload sketch_video_app_from_blank.py

Browse files
Files changed (1) hide show
  1. sketch_video_app_from_blank.py +289 -0
sketch_video_app_from_blank.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ conda create --name animeins python=3.10
3
+ conda activate animeins
4
+ pip install ipykernel
5
+ python -m ipykernel install --user --name animeins --display-name "animeins"
6
+ pip install -r requirements.txt
7
+
8
+ pip install torch==2.1.1 torchvision
9
+ pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.1/index.html
10
+ pip install mmdet
11
+ pip install "numpy<2.0.0"
12
+ pip install moviepy==1.0.3
13
+ pip install "httpx[socks]"
14
+ '''
15
+
16
+ import gradio as gr
17
+ import os
18
+ import cv2
19
+ import numpy as np
20
+ from PIL import Image
21
+ from typing import Literal
22
+ import pathlib
23
+ from animeinsseg import AnimeInsSeg, AnimeInstances
24
+ from animeinsseg.anime_instances import get_color
25
+
26
+ # Install required packages
27
+ os.system("mim install mmengine")
28
+ os.system('mim install mmcv==2.1.0')
29
+ os.system("mim install mmdet==3.2.0")
30
+
31
+ # Download model if not exists
32
+ if not os.path.exists("models"):
33
+ os.mkdir("models")
34
+ os.system("huggingface-cli lfs-enable-largefiles .")
35
+ os.system("git clone https://huggingface.co/dreMaz/AnimeInstanceSegmentation models/AnimeInstanceSegmentation")
36
+
37
+ # Initialize segmentation model
38
+ ckpt = r'models/AnimeInstanceSegmentation/rtmdetl_e60.ckpt'
39
+ mask_thres = 0.3
40
+ instance_thres = 0.3
41
+ refine_kwargs = {'refine_method': 'refinenet_isnet'}
42
+ net = AnimeInsSeg(ckpt, mask_thr=mask_thres, refine_kwargs=refine_kwargs)
43
+
44
+ def image_to_sketch(image: np.ndarray) -> np.ndarray:
45
+ """Convert image to pencil sketch"""
46
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
47
+ inverted = 255 - gray
48
+ blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
49
+ inverted_blurred = 255 - blurred
50
+ sketch = cv2.divide(gray, inverted_blurred, scale=256.0)
51
+ return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR) # Return 3-channel image
52
+
53
+ # ... (previous imports remain the same)
54
+
55
+ def generate_combined_transition_video(
56
+ original_image: np.ndarray,
57
+ depth_map: np.ndarray,
58
+ first_transition: str = 'character_first',
59
+ second_transition: str = 'character_first',
60
+ duration_sec: float = 6.0, # Total duration for both transitions
61
+ frame_rate: int = 30,
62
+ depth_blur: int = 15,
63
+ debug_visualize: bool = False
64
+ ) -> str:
65
+ """
66
+ Generate combined transition video with two phases:
67
+ 1. Blank to sketch
68
+ 2. Sketch to original
69
+
70
+ Each phase has its own transition options:
71
+ - 'character_first': Segmented instances transition first
72
+ - 'near_to_far': Transition from nearest to farthest based on depth
73
+ - 'far_to_near': Transition from farthest to nearest based on depth
74
+ """
75
+ # Convert images to proper format
76
+ original = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
77
+ depth_map = cv2.cvtColor(depth_map, cv2.COLOR_RGB2GRAY)
78
+
79
+ # Get sketch version
80
+ sketch = image_to_sketch(original)
81
+ h, w = original.shape[:2]
82
+
83
+ # Perform instance segmentation
84
+ instances: AnimeInstances = net.infer(
85
+ original,
86
+ output_type='numpy',
87
+ pred_score_thr=instance_thres
88
+ )
89
+
90
+ # Prepare depth map
91
+ depth_map = cv2.resize(depth_map, (w, h))
92
+ depth_map = cv2.GaussianBlur(depth_map, (depth_blur, depth_blur), 0)
93
+ depth_map = depth_map.astype(np.float32) / 255.0
94
+
95
+ # Create layer masks for both transitions
96
+ def create_layer_masks(transition_type):
97
+ layer_masks = []
98
+ layer_depths = []
99
+
100
+ # Process segmented instances
101
+ if instances.bboxes is not None:
102
+ for mask in instances.masks:
103
+ instance_depth = np.mean(depth_map[mask.astype(bool)])
104
+
105
+ if transition_type == 'character_first':
106
+ layer_masks.append(mask.astype(np.float32))
107
+ layer_depths.append(0)
108
+ else:
109
+ if transition_type == 'near_to_far':
110
+ instance_depth = 1.0 - instance_depth
111
+ layer_masks.append(mask.astype(np.float32))
112
+ layer_depths.append(instance_depth)
113
+
114
+ # Create a full mask for the remaining areas
115
+ if layer_masks:
116
+ full_mask = 1.0 - np.clip(np.sum(layer_masks, axis=0), 0, 1)
117
+ else:
118
+ full_mask = np.ones((h, w), dtype=np.float32)
119
+
120
+ # Process remaining areas
121
+ if transition_type == 'character_first':
122
+ if np.sum(full_mask) > 0:
123
+ layer_masks.append(full_mask)
124
+ layer_depths.append(1)
125
+ else:
126
+ remaining_depth = depth_map * full_mask
127
+ num_depth_bands = 10
128
+
129
+ min_depth = np.min(remaining_depth[full_mask > 0]) if np.sum(full_mask) > 0 else 0
130
+ max_depth = np.max(remaining_depth[full_mask > 0]) if np.sum(full_mask) > 0 else 1
131
+ depth_bands = np.linspace(min_depth, max_depth, num_depth_bands + 1)
132
+
133
+ for i in range(num_depth_bands):
134
+ lower = depth_bands[i]
135
+ upper = depth_bands[i+1]
136
+ band_mask = ((remaining_depth >= lower) & (remaining_depth < upper)).astype(np.float32)
137
+
138
+ if np.sum(band_mask) > 0:
139
+ band_depth = np.mean(remaining_depth[band_mask.astype(bool)])
140
+ if transition_type == 'near_to_far':
141
+ band_depth = 1.0 - band_depth
142
+
143
+ layer_masks.append(band_mask)
144
+ layer_depths.append(band_depth)
145
+
146
+ # Sort layers if needed
147
+ if transition_type != 'character_first' and layer_masks:
148
+ sorted_indices = np.argsort(layer_depths)
149
+ layer_masks = [layer_masks[i] for i in sorted_indices]
150
+
151
+ return layer_masks
152
+
153
+ # Get masks for both transitions
154
+ first_masks = create_layer_masks(first_transition)
155
+ second_masks = create_layer_masks(second_transition)
156
+
157
+ # Generate video
158
+ output_path = "output_video.mp4"
159
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
160
+ video = cv2.VideoWriter(output_path, fourcc, frame_rate, (w, h))
161
+ total_frames = int(duration_sec * frame_rate)
162
+ half_duration = duration_sec / 2
163
+
164
+ for frame_idx in range(total_frames):
165
+ current_time = frame_idx / frame_rate
166
+
167
+ # Determine which transition we're in
168
+ if current_time < half_duration:
169
+ # First transition: blank to sketch
170
+ progress = np.clip(current_time / half_duration, 0, 1)
171
+ num_layers = len(first_masks)
172
+ layer_duration = half_duration / num_layers if num_layers > 0 else half_duration
173
+
174
+ # Start with blank (white) image
175
+ blended = np.ones_like(original) * 255
176
+
177
+ for layer_idx, layer_mask in enumerate(first_masks):
178
+ layer_start = layer_idx * layer_duration
179
+ layer_progress = np.clip((current_time - layer_start) / layer_duration, 0, 1)
180
+
181
+ layer_alpha = layer_mask * layer_progress
182
+ layer_alpha = np.repeat(layer_alpha[..., np.newaxis], 3, axis=2)
183
+
184
+ blended = blended * (1 - layer_alpha) + sketch.astype(np.float32) * layer_alpha
185
+ else:
186
+ # Second transition: sketch to original
187
+ progress = np.clip((current_time - half_duration) / half_duration, 0, 1)
188
+ num_layers = len(second_masks)
189
+ layer_duration = half_duration / num_layers if num_layers > 0 else half_duration
190
+
191
+ # Start with sketch
192
+ blended = sketch.copy().astype(np.float32)
193
+
194
+ for layer_idx, layer_mask in enumerate(second_masks):
195
+ layer_start = half_duration + layer_idx * layer_duration
196
+ layer_progress = np.clip((current_time - layer_start) / layer_duration, 0, 1)
197
+
198
+ layer_alpha = layer_mask * layer_progress
199
+ layer_alpha = np.repeat(layer_alpha[..., np.newaxis], 3, axis=2)
200
+
201
+ blended = blended * (1 - layer_alpha) + original.astype(np.float32) * layer_alpha
202
+
203
+ blended = np.clip(blended, 0, 255).astype(np.uint8)
204
+
205
+ if debug_visualize:
206
+ cv2.imshow('Blended', blended)
207
+ if cv2.waitKey(1) == 27:
208
+ break
209
+
210
+ video.write(blended)
211
+
212
+ video.release()
213
+ if debug_visualize:
214
+ cv2.destroyAllWindows()
215
+
216
+ return output_path
217
+
218
+ def process_images(original_image, depth_map, first_transition, second_transition, duration):
219
+ # Convert PIL Images to numpy arrays
220
+ original_np = np.array(original_image)
221
+ depth_np = np.array(depth_map)
222
+
223
+ # Generate video
224
+ video_path = generate_combined_transition_video(
225
+ original_image=original_np,
226
+ depth_map=depth_np,
227
+ first_transition=first_transition,
228
+ second_transition=second_transition,
229
+ duration_sec=float(duration),
230
+ debug_visualize=False
231
+ )
232
+
233
+ return video_path
234
+
235
+ # Create Gradio interface
236
+ with gr.Blocks() as demo:
237
+ gr.Markdown("# Anime Image Transition Video Generator")
238
+ gr.Markdown("Upload an image and its depth map to generate a two-phase transition video:")
239
+ gr.Markdown("1. From blank to sketch")
240
+ gr.Markdown("2. From sketch to original image")
241
+
242
+ with gr.Row():
243
+ with gr.Column():
244
+ original_image = gr.Image(label="Original Image", type="pil")
245
+ depth_map = gr.Image(label="Depth Map", type="pil")
246
+
247
+ with gr.Group():
248
+ gr.Markdown("### First Transition (Blank → Sketch)")
249
+ first_transition = gr.Radio(
250
+ choices=["character_first", "near_to_far", "far_to_near"],
251
+ value="character_first",
252
+ label="Render Order",
253
+ info="How elements appear from blank to sketch"
254
+ )
255
+
256
+ with gr.Group():
257
+ gr.Markdown("### Second Transition (Sketch → Original)")
258
+ second_transition = gr.Radio(
259
+ choices=["character_first", "near_to_far", "far_to_near"],
260
+ value="character_first",
261
+ label="Render Order",
262
+ info="How elements transition from sketch to original"
263
+ )
264
+
265
+ duration = gr.Slider(2, 20, value=6, step=0.5, label="Total Duration (seconds)")
266
+ submit_btn = gr.Button("Generate Video")
267
+
268
+ with gr.Column():
269
+ output_video = gr.Video(label="Output Video")
270
+
271
+ submit_btn.click(
272
+ fn=process_images,
273
+ inputs=[original_image, depth_map, first_transition, second_transition, duration],
274
+ outputs=output_video
275
+ )
276
+
277
+ # Add examples if available
278
+ gr.Examples(
279
+ [
280
+ ["化物语封面.jpeg", "化物语封面深度.png", "character_first", "far_to_near"],
281
+ ["可莉风景.png", "可莉风景_depth.png", "near_to_far", "character_first"],
282
+ ["竹林万叶.jpg", "竹林万叶_depth.png", "far_to_near", "near_to_far"],
283
+ ["重云行秋.jpg", "重云行秋_depth.png", "character_first", "character_first"],
284
+ ],
285
+ inputs=[original_image, depth_map, first_transition, second_transition]
286
+ )
287
+
288
+ if __name__ == "__main__":
289
+ demo.launch(share=True)