Sujal Bhat
commited on
Commit
·
0d0eac6
1
Parent(s):
374b451
deliverables
Browse files- app.py +14 -2
- deliverables/Task1.md +49 -0
- fine_tune_model.py +141 -0
- fine_tuned_embedding_model/1_Pooling/config.json +10 -0
- fine_tuned_embedding_model/README.md +520 -0
- fine_tuned_embedding_model/config.json +26 -0
- fine_tuned_embedding_model/config_sentence_transformers.json +10 -0
- fine_tuned_embedding_model/modules.json +20 -0
- fine_tuned_embedding_model/sentence_bert_config.json +4 -0
- fine_tuned_embedding_model/special_tokens_map.json +37 -0
- fine_tuned_embedding_model/tokenizer.json +0 -0
- fine_tuned_embedding_model/tokenizer_config.json +64 -0
- fine_tuned_embedding_model/vocab.txt +0 -0
- ragas_finetune_eval/eval_config.py +33 -0
- ragas_finetune_eval/eval_data_loader.py +18 -0
- ragas_finetune_eval/eval_env_setup.py +15 -0
- ragas_finetune_eval/eval_main.py +37 -0
- ragas_finetune_eval/eval_rag_setup.py +50 -0
- ragas_finetune_eval/eval_rag_tester.py +11 -0
- ragas_finetune_eval/eval_ragas.py +18 -0
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
# Required Libraries
|
|
|
2 |
import fitz # PyMuPDF
|
3 |
import os
|
4 |
from langchain_openai import OpenAIEmbeddings
|
@@ -7,9 +8,13 @@ from dotenv import load_dotenv
|
|
7 |
from qdrant_client import QdrantClient # Import Qdrant client
|
8 |
import uuid # Add this import at the top of your file
|
9 |
import json
|
|
|
|
|
10 |
|
11 |
# Load environment variables from .env file
|
12 |
load_dotenv()
|
|
|
|
|
13 |
|
14 |
# Initialize Qdrant client
|
15 |
qdrant_api_key = os.getenv("QDRANT_API_KEY") # Get the Qdrant API key from environment variables
|
@@ -115,12 +120,19 @@ def chunk_text(text, themes):
|
|
115 |
return thematic_chunks
|
116 |
|
117 |
# Step 4: Embed the Chunks
|
118 |
-
def
|
119 |
openai_api_key = os.getenv("OPENAI_API_KEY") # Get the API key from environment variables
|
120 |
embeddings = OpenAIEmbeddings(model="text-embedding-3-small",openai_api_key=openai_api_key)
|
121 |
embedded_chunks = {theme: embeddings.embed_documents(chunks) for theme, chunks in thematic_chunks.items()}
|
122 |
return embedded_chunks
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
# Modified main execution block
|
125 |
def main():
|
126 |
resources_folder = "resources"
|
@@ -134,7 +146,7 @@ def main():
|
|
134 |
pdf_path = os.path.join(resources_folder, filename)
|
135 |
text = extract_text_from_pdf(pdf_path)
|
136 |
thematic_chunks = chunk_text(text, themes)
|
137 |
-
embedded_chunks =
|
138 |
|
139 |
# Ensure the collection exists
|
140 |
if not new_docs_processed:
|
|
|
1 |
# Required Libraries
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
import fitz # PyMuPDF
|
4 |
import os
|
5 |
from langchain_openai import OpenAIEmbeddings
|
|
|
8 |
from qdrant_client import QdrantClient # Import Qdrant client
|
9 |
import uuid # Add this import at the top of your file
|
10 |
import json
|
11 |
+
from huggingface_hub import login
|
12 |
+
|
13 |
|
14 |
# Load environment variables from .env file
|
15 |
load_dotenv()
|
16 |
+
login(token=os.getenv("HF_TOKEN"))
|
17 |
+
|
18 |
|
19 |
# Initialize Qdrant client
|
20 |
qdrant_api_key = os.getenv("QDRANT_API_KEY") # Get the Qdrant API key from environment variables
|
|
|
120 |
return thematic_chunks
|
121 |
|
122 |
# Step 4: Embed the Chunks
|
123 |
+
def embed_chunks_openai(thematic_chunks):
|
124 |
openai_api_key = os.getenv("OPENAI_API_KEY") # Get the API key from environment variables
|
125 |
embeddings = OpenAIEmbeddings(model="text-embedding-3-small",openai_api_key=openai_api_key)
|
126 |
embedded_chunks = {theme: embeddings.embed_documents(chunks) for theme, chunks in thematic_chunks.items()}
|
127 |
return embedded_chunks
|
128 |
|
129 |
+
def embed_chunks_fine_tuned(thematic_chunks):
|
130 |
+
model = SentenceTransformer("svb01/fine-tuned-embedding-model")
|
131 |
+
embedded_chunks = {theme: model.encode(chunks) for theme, chunks in thematic_chunks.items()}
|
132 |
+
return embedded_chunks
|
133 |
+
|
134 |
+
# The rest of app.py remains the same
|
135 |
+
|
136 |
# Modified main execution block
|
137 |
def main():
|
138 |
resources_folder = "resources"
|
|
|
146 |
pdf_path = os.path.join(resources_folder, filename)
|
147 |
text = extract_text_from_pdf(pdf_path)
|
148 |
thematic_chunks = chunk_text(text, themes)
|
149 |
+
embedded_chunks = embed_chunks_fine_tuned(thematic_chunks)
|
150 |
|
151 |
# Ensure the collection exists
|
152 |
if not new_docs_processed:
|
deliverables/Task1.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**Task 1: Dealing with the Data**
|
2 |
+
|
3 |
+
You identify the following important documents that, if used for context, you believe will help people understand what’s happening now:
|
4 |
+
1. 2022: Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People (PDF)
|
5 |
+
2. 2024: National Institute of Standards and Technology (NIST) Artificial Intelligent Risk Management Framework (PDF)
|
6 |
+
|
7 |
+
Your boss, the SVP of Technology, green-lighted this project to drive the adoption of AI throughout the enterprise. It will be a nice showpiece for the upcoming conference and the big AI initiative announcement the CEO is planning.
|
8 |
+
|
9 |
+
|
10 |
+
Task 1: Review the two PDFs and decide how best to chunk up the data with a single strategy to optimally answer the variety of questions you expect to receive from people.
|
11 |
+
Hint: Create a list of potential questions that people are likely to ask!
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
✅ Deliverables:
|
17 |
+
|
18 |
+
1. Describe the default chunking strategy that you will use.
|
19 |
+
|
20 |
+
The default chunking strategy used is a combination of size-based splitting and thematic categorization.
|
21 |
+
This strategy uses RecursiveCharacterTextSplitter with a chunk size of 1000 characters and an overlap of 200 characters. It then categorizes these chunks based on predefined themes.
|
22 |
+
|
23 |
+
2. Articulate a chunking strategy that you would also like to test out.
|
24 |
+
|
25 |
+
A pure size-based chunking strategy without thematic categorization. This would involve splitting the text into fixed-size chunks without attempting to categorize them based on themes.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
3. Describe how and why you made these decisions
|
30 |
+
|
31 |
+
The default strategy was chosen for its simplicity and efficiency:
|
32 |
+
|
33 |
+
* Size-based splitting (1000 characters) ensures manageable chunk sizes for processing and embedding.
|
34 |
+
* The 200-character overlap helps maintain context between chunks.
|
35 |
+
* Thematic categorization allows for organized retrieval based on specific topics of interest.
|
36 |
+
|
37 |
+
This approach balances processing efficiency with maintaining semantic coherence within chunks.
|
38 |
+
|
39 |
+
The alternative pure size-based strategy:
|
40 |
+
* Ensures consistent chunk sizes, which can be beneficial for processing and embedding.
|
41 |
+
* Is simpler to implement and doesn't rely on predefined themes.
|
42 |
+
* May split semantic units, potentially affecting the coherence of individual chunks.'
|
43 |
+
* Could be more comprehensive, including all parts of the document regardless of theme.
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
fine_tune_model.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from sentence_transformers import SentenceTransformer, InputExample, losses
|
3 |
+
from torch.utils.data import DataLoader
|
4 |
+
import random
|
5 |
+
from langchain_openai import OpenAIEmbeddings
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
import fitz # PyMuPDF
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from huggingface_hub import login, HfApi
|
10 |
+
import traceback
|
11 |
+
|
12 |
+
# Add this near the top of your file, after the imports
|
13 |
+
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
login(token=os.getenv("HF_TOKEN"), add_to_git_credential=True)
|
17 |
+
|
18 |
+
# Step 1: Extract Text from PDFs
|
19 |
+
def extract_text_from_pdf(pdf_path):
|
20 |
+
doc = fitz.open(pdf_path)
|
21 |
+
text = ""
|
22 |
+
for page in doc:
|
23 |
+
text += page.get_text()
|
24 |
+
return text
|
25 |
+
|
26 |
+
def chunk_text(text, themes):
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
28 |
+
chunks = text_splitter.split_text(text)
|
29 |
+
thematic_chunks = {theme: [] for theme in themes}
|
30 |
+
thematic_chunks["Unclassified"] = [] # Add an "Unclassified" category
|
31 |
+
|
32 |
+
for chunk in chunks:
|
33 |
+
theme_found = False
|
34 |
+
for theme in themes:
|
35 |
+
if theme.lower() in chunk.lower():
|
36 |
+
thematic_chunks[theme].append(chunk)
|
37 |
+
theme_found = True
|
38 |
+
break
|
39 |
+
if not theme_found:
|
40 |
+
thematic_chunks["Unclassified"].append(chunk)
|
41 |
+
|
42 |
+
print("Chunks per theme:")
|
43 |
+
for theme, theme_chunks in thematic_chunks.items():
|
44 |
+
print(f" {theme}: {len(theme_chunks)}")
|
45 |
+
|
46 |
+
return thematic_chunks
|
47 |
+
# ... (same as in app.py)
|
48 |
+
|
49 |
+
# Function to generate synthetic fine-tuning data
|
50 |
+
def generate_synthetic_data(thematic_chunks, n_samples=1000):
|
51 |
+
examples = []
|
52 |
+
print(f"Total themes: {len(thematic_chunks)}")
|
53 |
+
for theme, chunks in thematic_chunks.items():
|
54 |
+
print(f"Theme: {theme}, Number of chunks: {len(chunks)}")
|
55 |
+
if not chunks:
|
56 |
+
print(f"Warning: No chunks for theme '{theme}'. Skipping this theme.")
|
57 |
+
continue
|
58 |
+
samples_per_theme = max(1, n_samples // len(thematic_chunks))
|
59 |
+
for _ in range(samples_per_theme):
|
60 |
+
chunk = random.choice(chunks)
|
61 |
+
question = f"What does this text say about {theme.lower()}?"
|
62 |
+
examples.append(InputExample(texts=[question, chunk]))
|
63 |
+
print(f"Total examples generated: {len(examples)}")
|
64 |
+
return examples
|
65 |
+
|
66 |
+
# Function to fine-tune the model
|
67 |
+
def fine_tune_model(model, train_examples, output_path):
|
68 |
+
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
|
69 |
+
train_loss = losses.MultipleNegativesRankingLoss(model)
|
70 |
+
|
71 |
+
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=3, warmup_steps=100, output_path=output_path)
|
72 |
+
return model
|
73 |
+
|
74 |
+
def main():
|
75 |
+
resources_folder = "resources"
|
76 |
+
themes = [
|
77 |
+
"Safe and Effective Systems",
|
78 |
+
"Algorithmic Discrimination Protections",
|
79 |
+
"Data Privacy",
|
80 |
+
"Notice and Explanation",
|
81 |
+
"Human Alternatives",
|
82 |
+
"Risk Management",
|
83 |
+
"Governance",
|
84 |
+
"Trustworthiness",
|
85 |
+
"Unclassified"
|
86 |
+
]
|
87 |
+
|
88 |
+
all_thematic_chunks = {}
|
89 |
+
|
90 |
+
for filename in os.listdir(resources_folder):
|
91 |
+
if filename.endswith(".pdf"):
|
92 |
+
pdf_path = os.path.join(resources_folder, filename)
|
93 |
+
text = extract_text_from_pdf(pdf_path)
|
94 |
+
thematic_chunks = chunk_text(text, themes)
|
95 |
+
all_thematic_chunks.update(thematic_chunks)
|
96 |
+
print(f"Processed {filename}")
|
97 |
+
|
98 |
+
# Fine-tune the model
|
99 |
+
base_model = "sentence-transformers/all-MiniLM-L6-v2"
|
100 |
+
model = SentenceTransformer(base_model)
|
101 |
+
train_examples = generate_synthetic_data(all_thematic_chunks)
|
102 |
+
fine_tuned_model_path = "fine_tuned_embedding_model"
|
103 |
+
fine_tune_model(model, train_examples, fine_tuned_model_path)
|
104 |
+
|
105 |
+
print("Fine-tuning completed. Model saved locally.")
|
106 |
+
|
107 |
+
def upload_model_to_hub():
|
108 |
+
try:
|
109 |
+
# Load the fine-tuned model
|
110 |
+
fine_tuned_model_path = "fine_tuned_embedding_model"
|
111 |
+
model = SentenceTransformer(fine_tuned_model_path)
|
112 |
+
|
113 |
+
# Upload the fine-tuned model to Hugging Face Hub
|
114 |
+
repo_id = "svb01/fine-tuned-embedding-model"
|
115 |
+
|
116 |
+
print(f"Uploading model to existing repository: {repo_id}")
|
117 |
+
|
118 |
+
# Use HfApi to upload files directly
|
119 |
+
api = HfApi()
|
120 |
+
|
121 |
+
# Upload each file in the model directory
|
122 |
+
for root, _, files in os.walk(fine_tuned_model_path):
|
123 |
+
for file in files:
|
124 |
+
file_path = os.path.join(root, file)
|
125 |
+
api.upload_file(
|
126 |
+
path_or_fileobj=file_path,
|
127 |
+
path_in_repo=file,
|
128 |
+
repo_id=repo_id,
|
129 |
+
commit_message=f"Upload {file}"
|
130 |
+
)
|
131 |
+
|
132 |
+
print("Fine-tuned model uploaded to Hugging Face Hub.")
|
133 |
+
except Exception as e:
|
134 |
+
print(f"Error uploading model to Hugging Face Hub: {str(e)}")
|
135 |
+
print("Detailed error information:")
|
136 |
+
print(traceback.format_exc())
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
# Uncomment the function you want to run
|
140 |
+
# main() # Run this for fine-tuning
|
141 |
+
upload_model_to_hub() # Run this to upload the model
|
fine_tuned_embedding_model/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
fine_tuned_embedding_model/README.md
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:555
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: What does this text say about unclassified?
|
14 |
+
sentences:
|
15 |
+
- "these sources. \nErrors in third-party GAI components can also have downstream\
|
16 |
+
\ impacts on accuracy and robustness. \nFor example, test datasets commonly used\
|
17 |
+
\ to benchmark or validate models can contain label errors. \nInaccuracies in\
|
18 |
+
\ these labels can impact the “stability” or robustness of these benchmarks, which\
|
19 |
+
\ many \nGAI practitioners consider during the model selection process. \nTrustworthy\
|
20 |
+
\ AI Characteristics: Accountable and Transparent, Explainable and Interpretable,\
|
21 |
+
\ Fair with \nHarmful Bias Managed, Privacy Enhanced, Safe, Secure and Resilient,\
|
22 |
+
\ Valid and Reliable \n3. \nSuggested Actions to Manage GAI Risks \nThe following\
|
23 |
+
\ suggested actions target risks unique to or exacerbated by GAI. \nIn addition\
|
24 |
+
\ to the suggested actions below, AI risk management activities and actions set\
|
25 |
+
\ forth in the AI \nRMF 1.0 and Playbook are already applicable for managing GAI\
|
26 |
+
\ risks. Organizations are encouraged to"
|
27 |
+
- "and hardware vulnerabilities; labor practices; data privacy and localization\
|
28 |
+
\ \ncompliance; geopolitical alignment). \nData Privacy; Information Security;\
|
29 |
+
\ \nValue Chain and Component \nIntegration; Harmful Bias and \nHomogenization\
|
30 |
+
\ \nMG-3.1-003 \nRe-assess model risks after fine-tuning or retrieval-augmented\
|
31 |
+
\ generation \nimplementation and for any third-party GAI models deployed for\
|
32 |
+
\ applications \nand/or use cases that were not evaluated in initial testing.\
|
33 |
+
\ \nValue Chain and Component \nIntegration \nMG-3.1-004 \nTake reasonable measures\
|
34 |
+
\ to review training data for CBRN information, and \nintellectual property, and\
|
35 |
+
\ where appropriate, remove it. Implement reasonable \nmeasures to prevent, flag,\
|
36 |
+
\ or take other action in response to outputs that \nreproduce particular training\
|
37 |
+
\ data (e.g., plagiarized, trademarked, patented, \nlicensed content or trade\
|
38 |
+
\ secret material). \nIntellectual Property; CBRN \nInformation or Capabilities\
|
39 |
+
\ \n \n43"
|
40 |
+
- "• \nStage of the AI lifecycle: Risks can arise during design, development, deployment,\
|
41 |
+
\ operation, \nand/or decommissioning. \n• \nScope: Risks may exist at individual\
|
42 |
+
\ model or system levels, at the application or implementation \nlevels (i.e.,\
|
43 |
+
\ for a specific use case), or at the ecosystem level – that is, beyond a single\
|
44 |
+
\ system or \norganizational context. Examples of the latter include the expansion\
|
45 |
+
\ of “algorithmic \nmonocultures,3” resulting from repeated use of the same model,\
|
46 |
+
\ or impacts on access to \nopportunity, labor markets, and the creative economies.4\
|
47 |
+
\ \n• \nSource of risk: Risks may emerge from factors related to the design, training,\
|
48 |
+
\ or operation of the \nGAI model itself, stemming in some cases from GAI model\
|
49 |
+
\ or system inputs, and in other cases, \nfrom GAI system outputs. Many GAI risks,\
|
50 |
+
\ however, originate from human behavior, including \n \n \n3 “Algorithmic monocultures”\
|
51 |
+
\ refers to the phenomenon in which repeated use of the same model or algorithm\
|
52 |
+
\ in"
|
53 |
+
- source_sentence: What does this text say about unclassified?
|
54 |
+
sentences:
|
55 |
+
- "Security; Dangerous, Violent, or \nHateful Content \n \n34 \nMS-2.7-009 Regularly\
|
56 |
+
\ assess and verify that security measures remain effective and have not \nbeen\
|
57 |
+
\ compromised. \nInformation Security \nAI Actor Tasks: AI Deployment, AI Impact\
|
58 |
+
\ Assessment, Domain Experts, Operation and Monitoring, TEVV \n \nMEASURE 2.8:\
|
59 |
+
\ Risks associated with transparency and accountability – as identified in the\
|
60 |
+
\ MAP function – are examined and \ndocumented. \nAction ID \nSuggested Action\
|
61 |
+
\ \nGAI Risks \nMS-2.8-001 \nCompile statistics on actual policy violations, take-down\
|
62 |
+
\ requests, and intellectual \nproperty infringement for organizational GAI systems:\
|
63 |
+
\ Analyze transparency \nreports across demographic groups, languages groups.\
|
64 |
+
\ \nIntellectual Property; Harmful Bias \nand Homogenization \nMS-2.8-002 Document\
|
65 |
+
\ the instructions given to data annotators or AI red-teamers. \nHuman-AI Configuration\
|
66 |
+
\ \nMS-2.8-003 \nUse digital content transparency solutions to enable the documentation\
|
67 |
+
\ of each"
|
68 |
+
- "information during GAI training and maintenance. \nHuman-AI Configuration; Obscene,\
|
69 |
+
\ \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration;\
|
70 |
+
\ \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or\
|
71 |
+
\ levels of harmful bias, intellectual property infringement, \ndata privacy violations,\
|
72 |
+
\ obscenity, extremism, violence, or CBRN information in \nsystem training data.\
|
73 |
+
\ \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive\
|
74 |
+
\ Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful\
|
75 |
+
\ Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety\
|
76 |
+
\ features of fine-tuned models when the negative risk exceeds \norganizational\
|
77 |
+
\ risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review\
|
78 |
+
\ GAI system outputs for validity and safety: Review generated code to \nassess\
|
79 |
+
\ risks that may arise from unreliable downstream decision-making. \nValue Chain\
|
80 |
+
\ and Component \nIntegration; Dangerous, Violent, or \nHateful Content"
|
81 |
+
- "Information Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI\
|
82 |
+
\ Deployment, AI Impact Assessment, Domain Experts, End-Users, Operation and Monitoring,\
|
83 |
+
\ TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the\
|
84 |
+
\ MAP function – is examined and documented. \nAction ID \nSuggested Action \n\
|
85 |
+
GAI Risks \nMS-2.10-001 \nConduct AI red-teaming to assess issues such as: Outputting\
|
86 |
+
\ of training data \nsamples, and subsequent reverse engineering, model extraction,\
|
87 |
+
\ and \nmembership inference risks; Revealing biometric, confidential, copyrighted,\
|
88 |
+
\ \nlicensed, patented, personal, proprietary, sensitive, or trade-marked information;\
|
89 |
+
\ \nTracking or revealing location information of users or members of training\
|
90 |
+
\ \ndatasets. \nHuman-AI Configuration; \nInformation Integrity; Intellectual \n\
|
91 |
+
Property \nMS-2.10-002 \nEngage directly with end-users and other stakeholders\
|
92 |
+
\ to understand their \nexpectations and concerns regarding content provenance.\
|
93 |
+
\ Use this feedback to"
|
94 |
+
- source_sentence: What does this text say about risk management?
|
95 |
+
sentences:
|
96 |
+
- "robust watermarking techniques and corresponding detectors to identify the source\
|
97 |
+
\ of content or \nmetadata recording techniques and metadata management tools\
|
98 |
+
\ and repositories to trace content \norigins and modifications. Further narrowing\
|
99 |
+
\ of GAI task definitions to include provenance data can \nenable organizations\
|
100 |
+
\ to maximize the utility of provenance data and risk management efforts. \nA.1.7.\
|
101 |
+
\ Enhancing Content Provenance through Structured Public Feedback \nWhile indirect\
|
102 |
+
\ feedback methods such as automated error collection systems are useful, they\
|
103 |
+
\ often lack \nthe context and depth that direct input from end users can provide.\
|
104 |
+
\ Organizations can leverage feedback \napproaches described in the Pre-Deployment\
|
105 |
+
\ Testing section to capture input from external sources such \nas through AI\
|
106 |
+
\ red-teaming. \nIntegrating pre- and post-deployment external feedback into\
|
107 |
+
\ the monitoring process for GAI models and"
|
108 |
+
- "tools for monitoring third-party GAI risks; Consider policy adjustments across\
|
109 |
+
\ GAI \nmodeling libraries, tools and APIs, fine-tuned models, and embedded tools;\
|
110 |
+
\ \nAssess GAI vendors, open-source or proprietary GAI tools, or GAI service \n\
|
111 |
+
providers against incident or vulnerability databases. \nData Privacy; Human-AI\
|
112 |
+
\ \nConfiguration; Information \nSecurity; Intellectual Property; \nValue Chain\
|
113 |
+
\ and Component \nIntegration; Harmful Bias and \nHomogenization \nGV-6.1-010\
|
114 |
+
\ \nUpdate GAI acceptable use policies to address proprietary and open-source\
|
115 |
+
\ GAI \ntechnologies and data, and contractors, consultants, and other third-party\
|
116 |
+
\ \npersonnel. \nIntellectual Property; Value Chain \nand Component Integration\
|
117 |
+
\ \nAI Actor Tasks: Operation and Monitoring, Procurement, Third-party entities\
|
118 |
+
\ \n \nGOVERN 6.2: Contingency processes are in place to handle failures or incidents\
|
119 |
+
\ in third-party data or AI systems deemed to be \nhigh-risk. \nAction ID \nSuggested\
|
120 |
+
\ Action \nGAI Risks \nGV-6.2-001"
|
121 |
+
- "MEASURE 2.3: AI system performance or assurance criteria are measured qualitatively\
|
122 |
+
\ or quantitatively and demonstrated for \nconditions similar to deployment setting(s).\
|
123 |
+
\ Measures are documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-2.3-001\
|
124 |
+
\ Consider baseline model performance on suites of benchmarks when selecting a\
|
125 |
+
\ \nmodel for fine tuning or enhancement with retrieval-augmented generation. \n\
|
126 |
+
Information Security; \nConfabulation \nMS-2.3-002 Evaluate claims of model capabilities\
|
127 |
+
\ using empirically validated methods. \nConfabulation; Information \nSecurity\
|
128 |
+
\ \nMS-2.3-003 Share results of pre-deployment testing with relevant GAI Actors,\
|
129 |
+
\ such as those \nwith system release approval authority. \nHuman-AI Configuration\
|
130 |
+
\ \n \n31 \nMS-2.3-004 \nUtilize a purpose-built testing environment such as NIST\
|
131 |
+
\ Dioptra to empirically \nevaluate GAI trustworthy characteristics. \nCBRN Information\
|
132 |
+
\ or Capabilities; \nData Privacy; Confabulation; \nInformation Integrity; Information\
|
133 |
+
\ \nSecurity; Dangerous, Violent, or"
|
134 |
+
- source_sentence: What does this text say about unclassified?
|
135 |
+
sentences:
|
136 |
+
- "techniques such as re-sampling, re-ranking, or adversarial training to mitigate\
|
137 |
+
\ \nbiases in the generated content. \nInformation Security; Harmful Bias \nand\
|
138 |
+
\ Homogenization \nMG-2.2-005 \nEngage in due diligence to analyze GAI output\
|
139 |
+
\ for harmful content, potential \nmisinformation, and CBRN-related or NCII content.\
|
140 |
+
\ \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content;\
|
141 |
+
\ Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content\
|
142 |
+
\ \n \n41 \nMG-2.2-006 \nUse feedback from internal and external AI Actors, users,\
|
143 |
+
\ individuals, and \ncommunities, to assess impact of AI-generated content. \n\
|
144 |
+
Human-AI Configuration \nMG-2.2-007 \nUse real-time auditing tools where they can\
|
145 |
+
\ be demonstrated to aid in the \ntracking and validation of the lineage and authenticity\
|
146 |
+
\ of AI-generated data. \nInformation Integrity \nMG-2.2-008 \nUse structured\
|
147 |
+
\ feedback mechanisms to solicit and capture user input about AI-\ngenerated content\
|
148 |
+
\ to detect subtle shifts in quality or alignment with"
|
149 |
+
- "Human-AI Configuration; Value \nChain and Component Integration \nMP-5.2-002 \n\
|
150 |
+
Plan regular engagements with AI Actors responsible for inputs to GAI systems,\
|
151 |
+
\ \nincluding third-party data and algorithms, to review and evaluate unanticipated\
|
152 |
+
\ \nimpacts. \nHuman-AI Configuration; Value \nChain and Component Integration\
|
153 |
+
\ \nAI Actor Tasks: AI Deployment, AI Design, AI Impact Assessment, Affected Individuals\
|
154 |
+
\ and Communities, Domain Experts, End-\nUsers, Human Factors, Operation and Monitoring\
|
155 |
+
\ \n \nMEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated\
|
156 |
+
\ during the MAP function are selected for \nimplementation starting with the\
|
157 |
+
\ most significant AI risks. The risks or trustworthiness characteristics that\
|
158 |
+
\ will not – or cannot – be \nmeasured are properly documented. \nAction ID \n\
|
159 |
+
Suggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and\
|
160 |
+
\ modifications of digital content. \nInformation Integrity \nMS-1.1-002"
|
161 |
+
- "input them directly to a GAI system, with a variety of downstream negative consequences\
|
162 |
+
\ to \ninterconnected systems. Indirect prompt injection attacks occur when adversaries\
|
163 |
+
\ remotely (i.e., without \na direct interface) exploit LLM-integrated applications\
|
164 |
+
\ by injecting prompts into data likely to be \nretrieved. Security researchers\
|
165 |
+
\ have already demonstrated how indirect prompt injections can exploit \nvulnerabilities\
|
166 |
+
\ by stealing proprietary data or running malicious code remotely on a machine.\
|
167 |
+
\ Merely \nquerying a closed production model can elicit previously undisclosed\
|
168 |
+
\ information about that model. \nAnother cybersecurity risk to GAI is data poisoning,\
|
169 |
+
\ in which an adversary compromises a training \ndataset used by a model to manipulate\
|
170 |
+
\ its outputs or operation. Malicious tampering with data or parts \nof the model\
|
171 |
+
\ could exacerbate risks associated with GAI system outputs. \nTrustworthy AI\
|
172 |
+
\ Characteristics: Privacy Enhanced, Safe, Secure and Resilient, Valid and Reliable\
|
173 |
+
\ \n2.10."
|
174 |
+
- source_sentence: What does this text say about data privacy?
|
175 |
+
sentences:
|
176 |
+
- "Property. We also note that some risks are cross-cutting between these categories.\
|
177 |
+
\ \n \n4 \n1. CBRN Information or Capabilities: Eased access to or synthesis\
|
178 |
+
\ of materially nefarious \ninformation or design capabilities related to chemical,\
|
179 |
+
\ biological, radiological, or nuclear (CBRN) \nweapons or other dangerous materials\
|
180 |
+
\ or agents. \n2. Confabulation: The production of confidently stated but erroneous\
|
181 |
+
\ or false content (known \ncolloquially as “hallucinations” or “fabrications”)\
|
182 |
+
\ by which users may be misled or deceived.6 \n3. Dangerous, Violent, or Hateful\
|
183 |
+
\ Content: Eased production of and access to violent, inciting, \nradicalizing,\
|
184 |
+
\ or threatening content as well as recommendations to carry out self-harm or\
|
185 |
+
\ \nconduct illegal activities. Includes difficulty controlling public exposure\
|
186 |
+
\ to hateful and disparaging \nor stereotyping content. \n4. Data Privacy: Impacts\
|
187 |
+
\ due to leakage and unauthorized use, disclosure, or de-anonymization of"
|
188 |
+
- "information during GAI training and maintenance. \nHuman-AI Configuration; Obscene,\
|
189 |
+
\ \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration;\
|
190 |
+
\ \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or\
|
191 |
+
\ levels of harmful bias, intellectual property infringement, \ndata privacy violations,\
|
192 |
+
\ obscenity, extremism, violence, or CBRN information in \nsystem training data.\
|
193 |
+
\ \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive\
|
194 |
+
\ Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful\
|
195 |
+
\ Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety\
|
196 |
+
\ features of fine-tuned models when the negative risk exceeds \norganizational\
|
197 |
+
\ risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review\
|
198 |
+
\ GAI system outputs for validity and safety: Review generated code to \nassess\
|
199 |
+
\ risks that may arise from unreliable downstream decision-making. \nValue Chain\
|
200 |
+
\ and Component \nIntegration; Dangerous, Violent, or \nHateful Content"
|
201 |
+
- "Scheurer, J. et al. (2023) Technical report: Large language models can strategically\
|
202 |
+
\ deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590\
|
203 |
+
\ \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping\
|
204 |
+
\ a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \n\
|
205 |
+
Shevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324\
|
206 |
+
\ \nShumailov, I. et al. (2023) The curse of recursion: training on generated\
|
207 |
+
\ data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith,\
|
208 |
+
\ A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in\
|
209 |
+
\ Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388\
|
210 |
+
\ \nSoice, E. et al. (2023) Can large language models democratize access to dual-use\
|
211 |
+
\ biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809"
|
212 |
+
---
|
213 |
+
|
214 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
215 |
+
|
216 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
217 |
+
|
218 |
+
## Model Details
|
219 |
+
|
220 |
+
### Model Description
|
221 |
+
- **Model Type:** Sentence Transformer
|
222 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
|
223 |
+
- **Maximum Sequence Length:** 256 tokens
|
224 |
+
- **Output Dimensionality:** 384 tokens
|
225 |
+
- **Similarity Function:** Cosine Similarity
|
226 |
+
<!-- - **Training Dataset:** Unknown -->
|
227 |
+
<!-- - **Language:** Unknown -->
|
228 |
+
<!-- - **License:** Unknown -->
|
229 |
+
|
230 |
+
### Model Sources
|
231 |
+
|
232 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
233 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
234 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
235 |
+
|
236 |
+
### Full Model Architecture
|
237 |
+
|
238 |
+
```
|
239 |
+
SentenceTransformer(
|
240 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
241 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
242 |
+
(2): Normalize()
|
243 |
+
)
|
244 |
+
```
|
245 |
+
|
246 |
+
## Usage
|
247 |
+
|
248 |
+
### Direct Usage (Sentence Transformers)
|
249 |
+
|
250 |
+
First install the Sentence Transformers library:
|
251 |
+
|
252 |
+
```bash
|
253 |
+
pip install -U sentence-transformers
|
254 |
+
```
|
255 |
+
|
256 |
+
Then you can load this model and run inference.
|
257 |
+
```python
|
258 |
+
from sentence_transformers import SentenceTransformer
|
259 |
+
|
260 |
+
# Download from the 🤗 Hub
|
261 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
262 |
+
# Run inference
|
263 |
+
sentences = [
|
264 |
+
'What does this text say about data privacy?',
|
265 |
+
'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
|
266 |
+
'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
|
267 |
+
]
|
268 |
+
embeddings = model.encode(sentences)
|
269 |
+
print(embeddings.shape)
|
270 |
+
# [3, 384]
|
271 |
+
|
272 |
+
# Get the similarity scores for the embeddings
|
273 |
+
similarities = model.similarity(embeddings, embeddings)
|
274 |
+
print(similarities.shape)
|
275 |
+
# [3, 3]
|
276 |
+
```
|
277 |
+
|
278 |
+
<!--
|
279 |
+
### Direct Usage (Transformers)
|
280 |
+
|
281 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
282 |
+
|
283 |
+
</details>
|
284 |
+
-->
|
285 |
+
|
286 |
+
<!--
|
287 |
+
### Downstream Usage (Sentence Transformers)
|
288 |
+
|
289 |
+
You can finetune this model on your own dataset.
|
290 |
+
|
291 |
+
<details><summary>Click to expand</summary>
|
292 |
+
|
293 |
+
</details>
|
294 |
+
-->
|
295 |
+
|
296 |
+
<!--
|
297 |
+
### Out-of-Scope Use
|
298 |
+
|
299 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
300 |
+
-->
|
301 |
+
|
302 |
+
<!--
|
303 |
+
## Bias, Risks and Limitations
|
304 |
+
|
305 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
306 |
+
-->
|
307 |
+
|
308 |
+
<!--
|
309 |
+
### Recommendations
|
310 |
+
|
311 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
312 |
+
-->
|
313 |
+
|
314 |
+
## Training Details
|
315 |
+
|
316 |
+
### Training Dataset
|
317 |
+
|
318 |
+
#### Unnamed Dataset
|
319 |
+
|
320 |
+
|
321 |
+
* Size: 555 training samples
|
322 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
323 |
+
* Approximate statistics based on the first 555 samples:
|
324 |
+
| | sentence_0 | sentence_1 |
|
325 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|
326 |
+
| type | string | string |
|
327 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 11.2 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 156 tokens</li><li>mean: 199.37 tokens</li><li>max: 256 tokens</li></ul> |
|
328 |
+
* Samples:
|
329 |
+
| sentence_0 | sentence_1 |
|
330 |
+
|:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
331 |
+
| <code>What does this text say about trustworthiness?</code> | <code>other systems. <br>Information Integrity; Value Chain <br>and Component Integration <br>MP-2.2-002 <br>Observe and analyze how the GAI system interacts with external networks, and <br>identify any potential for negative externalities, particularly where content <br>provenance might be compromised. <br>Information Integrity <br>AI Actor Tasks: End Users <br> <br>MAP 2.3: Scientific integrity and TEVV considerations are identified and documented, including those related to experimental <br>design, data collection and selection (e.g., availability, representativeness, suitability), system trustworthiness, and construct <br>validation <br>Action ID <br>Suggested Action <br>GAI Risks <br>MP-2.3-001 <br>Assess the accuracy, quality, reliability, and authenticity of GAI output by <br>comparing it to a set of known ground truth data and by using a variety of <br>evaluation methods (e.g., human oversight and automated evaluation, proven <br>cryptographic techniques, review of content inputs). <br>Information Integrity <br> <br>25</code> |
|
332 |
+
| <code>What does this text say about unclassified?</code> | <code>training and TEVV data; Filtering of hate speech or content in GAI system <br>training data; Prevalence of GAI-generated data in GAI system training data. <br>Harmful Bias and Homogenization <br> <br> <br>15 Winogender Schemas is a sample set of paired sentences which differ only by gender of the pronouns used, <br>which can be used to evaluate gender bias in natural language processing coreference resolution systems. <br> <br>37 <br>MS-2.11-005 <br>Assess the proportion of synthetic to non-synthetic training data and verify <br>training data is not overly homogenous or GAI-produced to mitigate concerns of <br>model collapse. <br>Harmful Bias and Homogenization <br>AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and Communities, Domain Experts, End-Users, <br>Operation and Monitoring, TEVV <br> <br>MEASURE 2.12: Environmental impact and sustainability of AI model training and management activities – as identified in the MAP <br>function – are assessed and documented. <br>Action ID <br>Suggested Action <br>GAI Risks</code> |
|
333 |
+
| <code>What does this text say about unclassified?</code> | <code>Padmakumar, V. et al. (2024) Does writing with language models reduce content diversity? ICLR. <br>https://arxiv.org/pdf/2309.05196 <br>Park, P. et. al. (2024) AI deception: A survey of examples, risks, and potential solutions. Patterns, 5(5). <br>arXiv. https://arxiv.org/pdf/2308.14752 <br>Partnership on AI (2023) Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect <br>Disclosure. https://partnershiponai.org/glossary-for-synthetic-media-transparency-methods-part-1-<br>indirect-disclosure/ <br>Qu, Y. et al. (2023) Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-<br>To-Image Models. arXiv. https://arxiv.org/pdf/2305.13873 <br>Rafat, K. et al. (2023) Mitigating carbon footprint for knowledge distillation based deep learning model <br>compression. PLOS One. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285668 <br>Said, I. et al. (2022) Nonconsensual Distribution of Intimate Images: Exploring the Role of Legal Attitudes</code> |
|
334 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
335 |
+
```json
|
336 |
+
{
|
337 |
+
"scale": 20.0,
|
338 |
+
"similarity_fct": "cos_sim"
|
339 |
+
}
|
340 |
+
```
|
341 |
+
|
342 |
+
### Training Hyperparameters
|
343 |
+
#### Non-Default Hyperparameters
|
344 |
+
|
345 |
+
- `per_device_train_batch_size`: 16
|
346 |
+
- `per_device_eval_batch_size`: 16
|
347 |
+
- `multi_dataset_batch_sampler`: round_robin
|
348 |
+
|
349 |
+
#### All Hyperparameters
|
350 |
+
<details><summary>Click to expand</summary>
|
351 |
+
|
352 |
+
- `overwrite_output_dir`: False
|
353 |
+
- `do_predict`: False
|
354 |
+
- `eval_strategy`: no
|
355 |
+
- `prediction_loss_only`: True
|
356 |
+
- `per_device_train_batch_size`: 16
|
357 |
+
- `per_device_eval_batch_size`: 16
|
358 |
+
- `per_gpu_train_batch_size`: None
|
359 |
+
- `per_gpu_eval_batch_size`: None
|
360 |
+
- `gradient_accumulation_steps`: 1
|
361 |
+
- `eval_accumulation_steps`: None
|
362 |
+
- `torch_empty_cache_steps`: None
|
363 |
+
- `learning_rate`: 5e-05
|
364 |
+
- `weight_decay`: 0.0
|
365 |
+
- `adam_beta1`: 0.9
|
366 |
+
- `adam_beta2`: 0.999
|
367 |
+
- `adam_epsilon`: 1e-08
|
368 |
+
- `max_grad_norm`: 1
|
369 |
+
- `num_train_epochs`: 3
|
370 |
+
- `max_steps`: -1
|
371 |
+
- `lr_scheduler_type`: linear
|
372 |
+
- `lr_scheduler_kwargs`: {}
|
373 |
+
- `warmup_ratio`: 0.0
|
374 |
+
- `warmup_steps`: 0
|
375 |
+
- `log_level`: passive
|
376 |
+
- `log_level_replica`: warning
|
377 |
+
- `log_on_each_node`: True
|
378 |
+
- `logging_nan_inf_filter`: True
|
379 |
+
- `save_safetensors`: True
|
380 |
+
- `save_on_each_node`: False
|
381 |
+
- `save_only_model`: False
|
382 |
+
- `restore_callback_states_from_checkpoint`: False
|
383 |
+
- `no_cuda`: False
|
384 |
+
- `use_cpu`: False
|
385 |
+
- `use_mps_device`: False
|
386 |
+
- `seed`: 42
|
387 |
+
- `data_seed`: None
|
388 |
+
- `jit_mode_eval`: False
|
389 |
+
- `use_ipex`: False
|
390 |
+
- `bf16`: False
|
391 |
+
- `fp16`: False
|
392 |
+
- `fp16_opt_level`: O1
|
393 |
+
- `half_precision_backend`: auto
|
394 |
+
- `bf16_full_eval`: False
|
395 |
+
- `fp16_full_eval`: False
|
396 |
+
- `tf32`: None
|
397 |
+
- `local_rank`: 0
|
398 |
+
- `ddp_backend`: None
|
399 |
+
- `tpu_num_cores`: None
|
400 |
+
- `tpu_metrics_debug`: False
|
401 |
+
- `debug`: []
|
402 |
+
- `dataloader_drop_last`: False
|
403 |
+
- `dataloader_num_workers`: 0
|
404 |
+
- `dataloader_prefetch_factor`: None
|
405 |
+
- `past_index`: -1
|
406 |
+
- `disable_tqdm`: False
|
407 |
+
- `remove_unused_columns`: True
|
408 |
+
- `label_names`: None
|
409 |
+
- `load_best_model_at_end`: False
|
410 |
+
- `ignore_data_skip`: False
|
411 |
+
- `fsdp`: []
|
412 |
+
- `fsdp_min_num_params`: 0
|
413 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
414 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
415 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
416 |
+
- `deepspeed`: None
|
417 |
+
- `label_smoothing_factor`: 0.0
|
418 |
+
- `optim`: adamw_torch
|
419 |
+
- `optim_args`: None
|
420 |
+
- `adafactor`: False
|
421 |
+
- `group_by_length`: False
|
422 |
+
- `length_column_name`: length
|
423 |
+
- `ddp_find_unused_parameters`: None
|
424 |
+
- `ddp_bucket_cap_mb`: None
|
425 |
+
- `ddp_broadcast_buffers`: False
|
426 |
+
- `dataloader_pin_memory`: True
|
427 |
+
- `dataloader_persistent_workers`: False
|
428 |
+
- `skip_memory_metrics`: True
|
429 |
+
- `use_legacy_prediction_loop`: False
|
430 |
+
- `push_to_hub`: False
|
431 |
+
- `resume_from_checkpoint`: None
|
432 |
+
- `hub_model_id`: None
|
433 |
+
- `hub_strategy`: every_save
|
434 |
+
- `hub_private_repo`: False
|
435 |
+
- `hub_always_push`: False
|
436 |
+
- `gradient_checkpointing`: False
|
437 |
+
- `gradient_checkpointing_kwargs`: None
|
438 |
+
- `include_inputs_for_metrics`: False
|
439 |
+
- `eval_do_concat_batches`: True
|
440 |
+
- `fp16_backend`: auto
|
441 |
+
- `push_to_hub_model_id`: None
|
442 |
+
- `push_to_hub_organization`: None
|
443 |
+
- `mp_parameters`:
|
444 |
+
- `auto_find_batch_size`: False
|
445 |
+
- `full_determinism`: False
|
446 |
+
- `torchdynamo`: None
|
447 |
+
- `ray_scope`: last
|
448 |
+
- `ddp_timeout`: 1800
|
449 |
+
- `torch_compile`: False
|
450 |
+
- `torch_compile_backend`: None
|
451 |
+
- `torch_compile_mode`: None
|
452 |
+
- `dispatch_batches`: None
|
453 |
+
- `split_batches`: None
|
454 |
+
- `include_tokens_per_second`: False
|
455 |
+
- `include_num_input_tokens_seen`: False
|
456 |
+
- `neftune_noise_alpha`: None
|
457 |
+
- `optim_target_modules`: None
|
458 |
+
- `batch_eval_metrics`: False
|
459 |
+
- `eval_on_start`: False
|
460 |
+
- `eval_use_gather_object`: False
|
461 |
+
- `batch_sampler`: batch_sampler
|
462 |
+
- `multi_dataset_batch_sampler`: round_robin
|
463 |
+
|
464 |
+
</details>
|
465 |
+
|
466 |
+
### Framework Versions
|
467 |
+
- Python: 3.11.5
|
468 |
+
- Sentence Transformers: 3.1.1
|
469 |
+
- Transformers: 4.44.2
|
470 |
+
- PyTorch: 2.4.1+cpu
|
471 |
+
- Accelerate: 0.34.2
|
472 |
+
- Datasets: 3.0.0
|
473 |
+
- Tokenizers: 0.19.1
|
474 |
+
|
475 |
+
## Citation
|
476 |
+
|
477 |
+
### BibTeX
|
478 |
+
|
479 |
+
#### Sentence Transformers
|
480 |
+
```bibtex
|
481 |
+
@inproceedings{reimers-2019-sentence-bert,
|
482 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
483 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
484 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
485 |
+
month = "11",
|
486 |
+
year = "2019",
|
487 |
+
publisher = "Association for Computational Linguistics",
|
488 |
+
url = "https://arxiv.org/abs/1908.10084",
|
489 |
+
}
|
490 |
+
```
|
491 |
+
|
492 |
+
#### MultipleNegativesRankingLoss
|
493 |
+
```bibtex
|
494 |
+
@misc{henderson2017efficient,
|
495 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
496 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
497 |
+
year={2017},
|
498 |
+
eprint={1705.00652},
|
499 |
+
archivePrefix={arXiv},
|
500 |
+
primaryClass={cs.CL}
|
501 |
+
}
|
502 |
+
```
|
503 |
+
|
504 |
+
<!--
|
505 |
+
## Glossary
|
506 |
+
|
507 |
+
*Clearly define terms in order to be accessible across audiences.*
|
508 |
+
-->
|
509 |
+
|
510 |
+
<!--
|
511 |
+
## Model Card Authors
|
512 |
+
|
513 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
514 |
+
-->
|
515 |
+
|
516 |
+
<!--
|
517 |
+
## Model Card Contact
|
518 |
+
|
519 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
520 |
+
-->
|
fine_tuned_embedding_model/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
fine_tuned_embedding_model/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
fine_tuned_embedding_model/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
fine_tuned_embedding_model/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
fine_tuned_embedding_model/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
fine_tuned_embedding_model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fine_tuned_embedding_model/tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
fine_tuned_embedding_model/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ragas_finetune_eval/eval_config.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
# Path to .env file
|
5 |
+
ENV_PATH = Path(__file__).parent.parent / '.env'
|
6 |
+
|
7 |
+
# Configuration settings for evaluation
|
8 |
+
|
9 |
+
# Model and data paths
|
10 |
+
FINE_TUNED_MODEL_PATH = "svb01/fine-tuned-embedding-model"
|
11 |
+
TRAINING_DATA_PATH = "../resources/NIST.AI.600-1.pdf" # Adjust this path if needed
|
12 |
+
|
13 |
+
# RAG settings
|
14 |
+
RETRIEVER_K = 6
|
15 |
+
LLM_MODEL = "gpt-3.5-turbo"
|
16 |
+
LLM_TEMPERATURE = 0
|
17 |
+
|
18 |
+
# Evaluation settings
|
19 |
+
SAMPLE_QUESTIONS = [
|
20 |
+
"What are the main objectives of the EU AI Act?",
|
21 |
+
"How does the Act define high-risk AI systems?",
|
22 |
+
"What are the transparency requirements for AI systems?",
|
23 |
+
"How does the Act address AI in the workplace?"
|
24 |
+
]
|
25 |
+
|
26 |
+
# RAGAS metrics
|
27 |
+
RAGAS_METRICS = ["context_precision", "faithfulness", "answer_relevancy"]
|
28 |
+
|
29 |
+
# Chunk size for text splitting
|
30 |
+
CHUNK_SIZE = 750
|
31 |
+
CHUNK_OVERLAP = 20
|
32 |
+
|
33 |
+
BASE_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
ragas_finetune_eval/eval_data_loader.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFLoader
|
2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
3 |
+
from eval_config import CHUNK_SIZE, CHUNK_OVERLAP
|
4 |
+
|
5 |
+
def load_training_documents(file_path):
|
6 |
+
loader = PyPDFLoader(file_path)
|
7 |
+
data = loader.load()
|
8 |
+
|
9 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
10 |
+
chunk_size=CHUNK_SIZE,
|
11 |
+
chunk_overlap=CHUNK_OVERLAP,
|
12 |
+
length_function=len
|
13 |
+
)
|
14 |
+
|
15 |
+
return text_splitter.split_documents(data)
|
16 |
+
|
17 |
+
def load_sample_questions(questions):
|
18 |
+
return questions
|
ragas_finetune_eval/eval_env_setup.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from eval_config import ENV_PATH
|
4 |
+
|
5 |
+
def load_env_variables():
|
6 |
+
if os.path.exists(ENV_PATH):
|
7 |
+
load_dotenv(dotenv_path=ENV_PATH)
|
8 |
+
if os.getenv("OPENAI_API_KEY"):
|
9 |
+
print("OpenAI API key loaded successfully.")
|
10 |
+
else:
|
11 |
+
print("OpenAI API key not found in .env file.")
|
12 |
+
else:
|
13 |
+
print(f".env file not found at {ENV_PATH}")
|
14 |
+
|
15 |
+
# You can add more environment variable checks here if needed
|
ragas_finetune_eval/eval_main.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from eval_config import *
|
2 |
+
from eval_env_setup import load_env_variables
|
3 |
+
from eval_data_loader import load_training_documents, load_sample_questions
|
4 |
+
from eval_rag_setup import setup_rag_pipeline
|
5 |
+
from eval_rag_tester import test_rag_pipeline
|
6 |
+
from eval_ragas import run_ragas_evaluation, prepare_ragas_data
|
7 |
+
|
8 |
+
def main():
|
9 |
+
# Load environment variables
|
10 |
+
load_env_variables()
|
11 |
+
|
12 |
+
# Load data
|
13 |
+
training_documents = load_training_documents(TRAINING_DATA_PATH)
|
14 |
+
sample_questions = load_sample_questions(SAMPLE_QUESTIONS)
|
15 |
+
|
16 |
+
# Setup RAG pipeline
|
17 |
+
rag_chain, retriever = setup_rag_pipeline(
|
18 |
+
training_documents,
|
19 |
+
FINE_TUNED_MODEL_PATH,
|
20 |
+
BASE_MODEL_NAME,
|
21 |
+
RETRIEVER_K,
|
22 |
+
LLM_MODEL,
|
23 |
+
LLM_TEMPERATURE
|
24 |
+
)
|
25 |
+
|
26 |
+
# Test RAG pipeline
|
27 |
+
test_results = test_rag_pipeline(rag_chain, sample_questions)
|
28 |
+
|
29 |
+
# Prepare and run RAGAS evaluation
|
30 |
+
ragas_data = prepare_ragas_data(sample_questions, retriever, rag_chain)
|
31 |
+
ragas_results = run_ragas_evaluation(ragas_data, RAGAS_METRICS)
|
32 |
+
|
33 |
+
print("RAGAS Evaluation Results:")
|
34 |
+
print(ragas_results)
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
main()
|
ragas_finetune_eval/eval_rag_setup.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from langchain_community.vectorstores import FAISS
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from operator import itemgetter
|
8 |
+
from langchain_core.output_parsers import StrOutputParser
|
9 |
+
from langchain_core.runnables import RunnablePassthrough
|
10 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
11 |
+
import os
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
from safetensors import safe_open
|
14 |
+
|
15 |
+
def setup_rag_pipeline(training_documents, model_path, base_model_name, retriever_k, llm_model, llm_temperature):
|
16 |
+
# Load environment variables
|
17 |
+
load_dotenv()
|
18 |
+
hf_token = os.getenv('HF_TOKEN')
|
19 |
+
|
20 |
+
# Load the fine-tuned model directly
|
21 |
+
fine_tuned_model = SentenceTransformer(model_path, use_auth_token=hf_token)
|
22 |
+
|
23 |
+
# Create embeddings using the fine-tuned model
|
24 |
+
fine_tuned_embeddings = HuggingFaceEmbeddings(model_name=model_path, model_kwargs={'device': 'cpu'})
|
25 |
+
|
26 |
+
vectorstore = FAISS.from_documents(training_documents, fine_tuned_embeddings)
|
27 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": retriever_k})
|
28 |
+
|
29 |
+
RAG_PROMPT = """
|
30 |
+
You are an AI assistant specializing in the EU AI Act. Given the context and question below, provide a concise and accurate answer. If the information is not in the context, state that you don't have enough information to answer.
|
31 |
+
|
32 |
+
Context:
|
33 |
+
{context}
|
34 |
+
|
35 |
+
Question:
|
36 |
+
{question}
|
37 |
+
|
38 |
+
Answer:
|
39 |
+
"""
|
40 |
+
rag_prompt_template = ChatPromptTemplate.from_template(RAG_PROMPT)
|
41 |
+
|
42 |
+
rag_llm = ChatOpenAI(model=llm_model, temperature=llm_temperature)
|
43 |
+
|
44 |
+
rag_chain = (
|
45 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
46 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
47 |
+
| {"response": rag_prompt_template | rag_llm | StrOutputParser(), "context": itemgetter("context")}
|
48 |
+
)
|
49 |
+
|
50 |
+
return rag_chain, retriever
|
ragas_finetune_eval/eval_rag_tester.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def test_rag_pipeline(rag_chain, questions):
|
2 |
+
results = []
|
3 |
+
for question in questions:
|
4 |
+
response = rag_chain.invoke({"question": question})
|
5 |
+
results.append({
|
6 |
+
"question": question,
|
7 |
+
"answer": response['response']
|
8 |
+
})
|
9 |
+
print(f"Question: {question}")
|
10 |
+
print(f"Answer: {response['response']}\n")
|
11 |
+
return results
|
ragas_finetune_eval/eval_ragas.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ragas import evaluate
|
2 |
+
from datasets import Dataset
|
3 |
+
|
4 |
+
def run_ragas_evaluation(test_data, metrics):
|
5 |
+
test_dataset = Dataset.from_list(test_data)
|
6 |
+
result = evaluate(test_dataset, metrics=metrics)
|
7 |
+
return result
|
8 |
+
|
9 |
+
def prepare_ragas_data(questions, retriever, rag_chain):
|
10 |
+
test_data = [
|
11 |
+
{
|
12 |
+
"question": q,
|
13 |
+
"contexts": [c.page_content for c in retriever.get_relevant_documents(q)],
|
14 |
+
"answer": rag_chain.invoke({"question": q})["response"]
|
15 |
+
}
|
16 |
+
for q in questions
|
17 |
+
]
|
18 |
+
return test_data
|