import gradio as gr from transformers import pipeline import sys # Toggle this to True if you want to see debug prints DEBUG = False # Load the toxicity classification pipeline print("Loading toxicity classifier pipeline...") toxicity_pipeline = pipeline( "text-classification", model="s-nlp/roberta_toxicity_classifier", tokenizer="s-nlp/roberta_toxicity_classifier" ) print("Pipeline loaded successfully!") def toxicity_classification(text: str) -> dict: """ Classify the toxicity of the given text. Args: text (str): The text to analyze Returns: dict: A dictionary containing toxicity classification and confidence """ if not text.strip(): return {"error": "Please enter some text to analyze"} try: # Get the top prediction using the pipeline result = toxicity_pipeline(text)[0] if DEBUG: print(f"DEBUG - Pipeline result: {result}") # The model returns labels like "neutral" or "toxic" label = result.get("label", "neutral").lower() score = result.get("score", 0.0) # Map "neutral" (or any non-toxic) to non-toxic if label == "toxic": classification = "toxic" confidence = score else: classification = "non-toxic" confidence = score return { "classification": classification, "confidence": round(confidence, 4) } except Exception as e: return {"error": f"Error processing text: {str(e)}"} # Create the Gradio interface demo = gr.Interface( fn=toxicity_classification, inputs=gr.Textbox( placeholder="Enter text to analyze for toxicity...", lines=3, label="Input Text" ), outputs=gr.JSON(label="Toxicity Analysis Results"), title="Text Toxicity Classification", description="Analyze text toxicity using RoBERTa transformer model (s-nlp/roberta_toxicity_classifier)", examples=[ ["You are amazing!"], ["This is a wonderful day."], ["I hate you so much!"], ["You're such an idiot!"], ] ) if __name__ == "__main__": # If "debug" was passed as a command-line argument, run local tests if len(sys.argv) > 1 and sys.argv[1].lower() == "debug": DEBUG = True print("=" * 50) print("DEBUG MODE - Testing toxicity classification locally") print("=" * 50) test_cases = [ "You are amazing!", "This is a wonderful day.", "I hate you so much!", "You're such an idiot!", "I disagree with your opinion.", "" # Empty string test ] for i, test_text in enumerate(test_cases, 1): print(f"\n--- Test Case {i} ---") print(f"Input: '{test_text}'") result = toxicity_classification(test_text) print(f"Output: {result}") print("-" * 30) print("\nDebug testing completed!") else: # Normal Gradio mode: launch with MCP server enabled demo.launch(mcp_server=True)