Spaces:
Runtime error
Runtime error
File size: 4,103 Bytes
4a7978f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from __future__ import annotations
import math
import random
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionSAGPipeline
help_text = """
Self-Attention Guidance
"""
examples = [
[
' ',
50,
False,
8978,
7.5,
1.0,
],
[
'.',
50,
False,
8978,
7.5,
1.0,
],
[
'A cute Scottish Fold playing with a ball',
50,
False,
8978,
5.0,
1.0,
],
[
'A person with a happy dog',
50,
False,
8978,
5.0,
1.0,
],
]
model_id = "runwayml/stable-diffusion-v1-5"
def main():
pipe = StableDiffusionSAGPipeline.from_pretrained(model_id)#, torch_dtype=torch.float16)
def generate(
prompt: str,
steps: int,
randomize_seed: bool,
seed: int,
cfg_scale: float,
sag_scale: float,
):
seed = random.randint(0, 100000) if randomize_seed else seed
generator = torch.manual_seed(seed)
ori_image = pipe(prompt, generator=generator, guidance_scale=cfg_scale, sag_scale=0.75).images[0]
generator = torch.manual_seed(seed)
sag_image = pipe(prompt, generator=generator, guidance_scale=cfg_scale, sag_scale=0.75).images[0]
return [seed, ori_image, sag_image]
def reset():
return [0, "Randomize Seed", 1371, 5.0, 0.75, None, None]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
Self-Attention Guidance
""")
with gr.Row():
with gr.Column(scale=5):
prompt = gr.Textbox(lines=1, label="Enter your prompt", interactive=True)
with gr.Column(scale=1, min_width=60):
generate_button = gr.Button("Generate")
with gr.Column(scale=1, min_width=60):
reset_button = gr.Button("Reset")
with gr.Row():
ori_image = gr.Image(label="CFG", type="pil", interactive=False)
sag_image = gr.Image(label="SAG + CFG", type="pil", interactive=False)
ori_image.style(height=512, width=512)
sag_image.style(height=512, width=512)
with gr.Row():
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Fix Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=8978, precision=0, label="Seed", interactive=True)
with gr.Row():
cfg_scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=10, value=5.0, step=0.1
)
sag_scale = gr.Slider(
label="Self-Attention Guidance Scale", minimum=0, maximum=1.0, value=0.75, step=0.05
)
ex = gr.Examples(
examples=examples,
fn=generate,
inputs=[
prompt,
steps,
randomize_seed,
seed,
cfg_scale,
sag_scale,
],
outputs=[seed, ori_image, sag_image],
cache_examples=True,
preprocess=False,
postprocess=False
)
gr.Markdown(help_text)
generate_button.click(
fn=generate,
inputs=[
prompt,
steps,
randomize_seed,
seed,
cfg_scale,
sag_scale,
],
outputs=[seed, ori_image, sag_image],
)
reset_button.click(
fn=reset,
inputs=[],
outputs=[steps, randomize_seed, seed, cfg_scale, sag_scale, ori_image, sag_image],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main() |