File size: 4,103 Bytes
4a7978f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import annotations

import math
import random

import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionSAGPipeline


help_text = """
Self-Attention Guidance
"""


examples = [
    [
        ' ',
        50,
        False,
        8978,
        7.5,
        1.0,
    ],
    [
        '.',
        50,
        False,
        8978,
        7.5,
        1.0,
    ],
    [
        'A cute Scottish Fold playing with a ball',
        50,
        False,
        8978,
        5.0,
        1.0,
    ],
    [
        'A person with a happy dog',
        50,
        False,
        8978,
        5.0,
        1.0,
    ],
]


model_id = "runwayml/stable-diffusion-v1-5"

def main():
    pipe = StableDiffusionSAGPipeline.from_pretrained(model_id)#, torch_dtype=torch.float16)

    def generate(
        prompt: str,
        steps: int,
        randomize_seed: bool,
        seed: int,
        cfg_scale: float,
        sag_scale: float,
    ):
        seed = random.randint(0, 100000) if randomize_seed else seed

        generator = torch.manual_seed(seed)
        ori_image = pipe(prompt, generator=generator, guidance_scale=cfg_scale, sag_scale=0.75).images[0]
        generator = torch.manual_seed(seed)
        sag_image = pipe(prompt, generator=generator, guidance_scale=cfg_scale, sag_scale=0.75).images[0]
        return [seed, ori_image, sag_image]

    def reset():
        return [0, "Randomize Seed", 1371, 5.0, 0.75, None, None]

    with gr.Blocks() as demo:
        gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
           Self-Attention Guidance
        """)
        with gr.Row():
            with gr.Column(scale=5):
                prompt = gr.Textbox(lines=1, label="Enter your prompt", interactive=True)
            with gr.Column(scale=1, min_width=60):
                generate_button = gr.Button("Generate")
            with gr.Column(scale=1, min_width=60):
                reset_button = gr.Button("Reset")

        with gr.Row():
            ori_image = gr.Image(label="CFG", type="pil", interactive=False)
            sag_image = gr.Image(label="SAG + CFG", type="pil", interactive=False)
            ori_image.style(height=512, width=512)
            sag_image.style(height=512, width=512)

        with gr.Row():
            steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
            randomize_seed = gr.Radio(
                ["Fix Seed", "Randomize Seed"],
                value="Fix Seed",
                type="index",
                show_label=False,
                interactive=True,
            )
            seed = gr.Number(value=8978, precision=0, label="Seed", interactive=True)
            
        with gr.Row():
            cfg_scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=10, value=5.0, step=0.1
            )
            sag_scale = gr.Slider(
                label="Self-Attention Guidance Scale", minimum=0, maximum=1.0, value=0.75, step=0.05
            )
            
        ex = gr.Examples(
            examples=examples,
            fn=generate,
            inputs=[
                prompt,
                steps,
                randomize_seed,
                seed,
                cfg_scale,
                sag_scale,
            ],
            outputs=[seed, ori_image, sag_image],
            cache_examples=True,
            preprocess=False,
            postprocess=False
        )

        gr.Markdown(help_text)
        
        generate_button.click(
            fn=generate,
            inputs=[
                prompt,
                steps,
                randomize_seed,
                seed,
                cfg_scale,
                sag_scale,
            ],
            outputs=[seed, ori_image, sag_image],
        )
        reset_button.click(
            fn=reset,
            inputs=[],
            outputs=[steps, randomize_seed, seed, cfg_scale, sag_scale, ori_image, sag_image],
        )

    demo.queue(concurrency_count=1)
    demo.launch(share=False)


if __name__ == "__main__":
    main()