|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from fastapi.middleware.cors import CORSMiddleware |
|
import uvicorn |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["http://localhost:3000", "chrome-extension://*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") |
|
|
|
|
|
class MeaningRequest(BaseModel): |
|
text: str |
|
|
|
|
|
class MeaningResponse(BaseModel): |
|
meaning: str |
|
|
|
def get_meaning_from_llm(text: str) -> str: |
|
""" |
|
Get meaning of text using Google's Generative AI. |
|
""" |
|
|
|
prompt = f"Explain the meaning of the following text in simple terms in only one or two lines not more than that: '{text}'" |
|
|
|
|
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-1.5-flash", |
|
temperature=0.1, |
|
max_tokens=None, |
|
timeout=None, |
|
max_retries=2, |
|
google_api_key=GOOGLE_API_KEY |
|
) |
|
response = llm.invoke(prompt) |
|
return response.content |
|
|
|
@app.post("/get_meaning", response_model=MeaningResponse) |
|
async def get_meaning(request: MeaningRequest): |
|
""" |
|
Endpoint to return meaning. |
|
""" |
|
try: |
|
print(f"Received text: {request.text}") |
|
|
|
text = request.text |
|
|
|
meaning = get_meaning_from_llm(text) |
|
|
|
return MeaningResponse( |
|
meaning=meaning |
|
) |
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
if __name__ == "__main__": |
|
|
|
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True) |