Spaces:
Running
Running
Commit
Β·
32c0b8d
1
Parent(s):
b6b7d0e
merge
Browse files
app.py
CHANGED
@@ -1,26 +1,94 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from sentence_transformers import SentenceTransformer
|
|
|
4 |
from typing import List
|
|
|
|
|
|
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
bge_small_model = SentenceTransformer('BAAI/bge-small-en-v1.5', device="cpu")
|
|
|
|
|
|
|
8 |
all_mp_net_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device="cpu")
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Request
|
14 |
class TextInput(BaseModel):
|
15 |
-
text: List[str]
|
16 |
model_name: str
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
@app.post("/get-embedding/")
|
20 |
async def get_embedding(input: TextInput):
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
else:
|
25 |
embeddings = bge_small_model.encode(input.text)
|
26 |
return {"embeddings": embeddings.tolist()}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
5 |
from typing import List
|
6 |
+
import torch
|
7 |
+
from functools import lru_cache
|
8 |
+
import logging
|
9 |
|
10 |
+
# π§ Configure logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# π Initialize FastAPI app
|
15 |
+
app = FastAPI()
|
16 |
+
logger.info("Starting FastAPI application")
|
17 |
+
|
18 |
+
# π Load SentenceTransformer models
|
19 |
+
logger.info("Loading BGE small model...")
|
20 |
bge_small_model = SentenceTransformer('BAAI/bge-small-en-v1.5', device="cpu")
|
21 |
+
logger.info("Loaded BGE small model")
|
22 |
+
|
23 |
+
logger.info("Loading All-MPNet model...")
|
24 |
all_mp_net_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2', device="cpu")
|
25 |
+
logger.info("Loaded All-MPNet model")
|
26 |
|
27 |
+
# π Load SPLADE model
|
28 |
+
logger.info("Loading SPLADE model...")
|
29 |
+
SPLADE_MODEL = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-ensembledistil", trust_remote_code=True)
|
30 |
+
SPLADE_TOKENIZER = AutoTokenizer.from_pretrained("naver/splade-cocondenser-ensembledistil")
|
31 |
+
SPLADE_MODEL.eval()
|
32 |
+
logger.info("Loaded SPLADE model")
|
33 |
|
34 |
+
# π¦ Request and response models
|
35 |
class TextInput(BaseModel):
|
36 |
+
text: List[str]
|
37 |
model_name: str
|
38 |
|
39 |
+
class SparseVector(BaseModel):
|
40 |
+
indices: List[int]
|
41 |
+
values: List[float]
|
42 |
+
|
43 |
+
# π§ LRU cacheable versions
|
44 |
+
@lru_cache(maxsize=1000)
|
45 |
+
def encode_dense_cached(model_name: str, text: str):
|
46 |
+
logger.info(f"Encoding dense text with model {model_name}: {text}")
|
47 |
+
if model_name == "BM":
|
48 |
+
embedding = all_mp_net_model.encode([text])[0].tolist()
|
49 |
+
else:
|
50 |
+
embedding = bge_small_model.encode([text])[0].tolist()
|
51 |
+
logger.info(f"Finished encoding dense text")
|
52 |
+
return embedding
|
53 |
+
|
54 |
+
@lru_cache(maxsize=1000)
|
55 |
+
def encode_splade_cached(text: str) -> SparseVector:
|
56 |
+
logger.info(f"Encoding SPLADE sparse vector: {text}")
|
57 |
+
inputs = SPLADE_TOKENIZER(text, return_tensors="pt", truncation=True)
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = SPLADE_MODEL(**inputs)
|
60 |
+
|
61 |
+
logits = outputs.logits[0]
|
62 |
+
relu_log = torch.log1p(torch.relu(logits))
|
63 |
+
nonzero = relu_log.nonzero(as_tuple=False)
|
64 |
+
|
65 |
+
if nonzero.shape[0] == 0:
|
66 |
+
logger.info("No non-zero values found in SPLADE output")
|
67 |
+
return SparseVector(indices=[], values=[])
|
68 |
+
|
69 |
+
vocab_indices = nonzero[:, 1]
|
70 |
+
values = relu_log[nonzero[:, 0], nonzero[:, 1]]
|
71 |
+
|
72 |
+
logger.info(f"SPLADE encoding complete with {len(vocab_indices)} dimensions")
|
73 |
+
return SparseVector(
|
74 |
+
indices=vocab_indices.cpu().numpy().tolist(),
|
75 |
+
values=values.cpu().numpy().tolist()
|
76 |
+
)
|
77 |
+
|
78 |
+
# π Main endpoint
|
79 |
@app.post("/get-embedding/")
|
80 |
async def get_embedding(input: TextInput):
|
81 |
+
logger.info(f"Received request with model: {input.model_name}, texts: {input.text}")
|
82 |
+
|
83 |
+
model_key = input.model_name.upper()
|
84 |
+
if model_key in {"BM", "BG"}:
|
85 |
+
embeddings = [encode_dense_cached(model_key, t) for t in input.text]
|
86 |
+
logger.info(f"Returning dense embeddings for {len(embeddings)} texts")
|
87 |
+
return {"type": "dense", "embeddings": embeddings}
|
88 |
+
elif model_key == "SPLADE":
|
89 |
+
sparse_vecs = [encode_splade_cached(t).model_dump() for t in input.text]
|
90 |
+
logger.info(f"Returning sparse embeddings for {len(sparse_vecs)} texts")
|
91 |
+
return {"type": "sparse", "embeddings": sparse_vecs}
|
92 |
else:
|
93 |
embeddings = bge_small_model.encode(input.text)
|
94 |
return {"embeddings": embeddings.tolist()}
|