Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,133 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
-
def __init__(self):
|
|
|
15 |
print("BasicAgent initialized.")
|
16 |
def __call__(self, question: str) -> str:
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -40,7 +152,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
+
from langgraph.graph import StateGraph, MessagesState, START
|
8 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
9 |
+
from langchain_community.document_loaders import WikipediaLoader
|
10 |
+
from langchain_community.tools import TavilySearchResults, DuckDuckGoSearchRun
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import operator
|
13 |
+
from typing import Annotated
|
14 |
+
from typing_extensions import TypedDict
|
15 |
|
16 |
+
load_dotenv()
|
17 |
# (Keep Constants as is)
|
18 |
# --- Constants ---
|
19 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
20 |
|
21 |
+
SYSTEM_MESSAGE = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:[YOUR FINAL ANSWER].
|
22 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
23 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
24 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
25 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
26 |
+
"""
|
27 |
+
|
28 |
# --- Basic Agent Definition ---
|
29 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
30 |
class BasicAgent:
|
31 |
+
def __init__(self, graph):
|
32 |
+
self.graph = graph
|
33 |
print("BasicAgent initialized.")
|
34 |
def __call__(self, question: str) -> str:
|
35 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
36 |
+
input_state = {"question": question}
|
37 |
+
# Run the graph
|
38 |
+
answer = self.graph.invoke(input_state)
|
39 |
+
print(f"Agent returning fixed answer: {answer}")
|
40 |
+
return answer
|
41 |
+
|
42 |
+
class State(TypedDict):
|
43 |
+
question: str
|
44 |
+
answer: str
|
45 |
+
context: Annotated[list, operator.add]
|
46 |
+
|
47 |
+
def search_tavily(state):
|
48 |
+
|
49 |
+
""" Retrieve docs from web search """
|
50 |
+
|
51 |
+
# Search
|
52 |
+
tavily_search = TavilySearchResults(max_results=2)
|
53 |
+
search_docs = tavily_search.invoke(state['question'])
|
54 |
+
|
55 |
+
# Format
|
56 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
57 |
+
[
|
58 |
+
f'<Document href="{doc["url"]}"/>\n{doc["content"]}\n</Document>'
|
59 |
+
for doc in search_docs
|
60 |
+
]
|
61 |
+
)
|
62 |
+
|
63 |
+
return {"context": [formatted_search_docs]}
|
64 |
+
|
65 |
+
def search_wikipedia(state):
|
66 |
+
|
67 |
+
""" Retrieve docs from wikipedia """
|
68 |
+
|
69 |
+
# Search
|
70 |
+
search_docs = WikipediaLoader(query=state['question'],
|
71 |
+
load_max_docs=2).load()
|
72 |
+
|
73 |
+
# Format
|
74 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
75 |
+
[
|
76 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
77 |
+
for doc in search_docs
|
78 |
+
]
|
79 |
+
)
|
80 |
+
|
81 |
+
return {"context": [formatted_search_docs]}
|
82 |
+
|
83 |
+
def search_DuckDuckGo(state):
|
84 |
+
|
85 |
+
""" Retrive answer from DuckDuckGoSearch."""
|
86 |
+
|
87 |
+
ddg_search = DuckDuckGoSearchRun(max_results=2)
|
88 |
+
search_docs = ddg_search.invoke(state['question'])
|
89 |
+
|
90 |
+
# Format
|
91 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
92 |
+
[
|
93 |
+
f'<Document href="{doc["url"]}"/>\n{doc["content"]}\n</Document>'
|
94 |
+
for doc in search_docs
|
95 |
+
]
|
96 |
+
)
|
97 |
+
|
98 |
+
return {"context": [formatted_search_docs]}
|
99 |
+
|
100 |
+
def generate_answer(state):
|
101 |
+
|
102 |
+
"""Node to give answer to the question"""
|
103 |
+
|
104 |
+
context = state["context"]
|
105 |
+
question = state["question"]
|
106 |
+
|
107 |
+
additional_context_template = """Here are some contexts about the question you can use if you find it helpful: {context}"""
|
108 |
+
additional_context = additional_context_template.format(context=context)
|
109 |
+
final_instruction = SYSTEM_MESSAGE + additional_context
|
110 |
+
|
111 |
+
#answer
|
112 |
+
answer = llm.invoke([SystemMessage(content=final_instruction)] + [HumanMessage(content=f"Answer the question: {question}")])
|
113 |
+
|
114 |
+
# Append it to state
|
115 |
+
return {"answer": answer}
|
116 |
+
|
117 |
+
|
118 |
+
builder = StateGraph(State)
|
119 |
+
|
120 |
+
builder.add_node("search_tavily",search_tavily)
|
121 |
+
builder.add_node("search_wikipedia", search_wikipedia)
|
122 |
+
builder.add_node("search_DuckDuckGo", search_DuckDuckGo)
|
123 |
+
builder.add_node("generate_answer", generate_answer)
|
124 |
+
|
125 |
+
builder.add_edge(START, "search_wikipedia")
|
126 |
+
builder.add_edge(START, "search_tavily")
|
127 |
+
builder.add_edge(START, "search_DuckDuckGo")
|
128 |
+
builder.add_edge("search_wikipedia", "generate_answer")
|
129 |
+
builder.add_edge("search_tavily", "generate_answer")
|
130 |
+
builder.add_edge("search_DuckDuckGo", "generate_answer")
|
131 |
+
graph = builder.compile()
|
132 |
+
|
133 |
|
134 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
135 |
"""
|
|
|
152 |
|
153 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
154 |
try:
|
155 |
+
agent = BasicAgent(graph)
|
156 |
except Exception as e:
|
157 |
print(f"Error instantiating agent: {e}")
|
158 |
return f"Error initializing agent: {e}", None
|