|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import os |
|
from runpy import run_path |
|
from skimage import img_as_ubyte |
|
import cv2 |
|
from tqdm import tqdm |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description='Test Restormer on your own images') |
|
parser.add_argument('--input_path', default='./temp/image.jpg', type=str, help='Directory of input images or path of single image') |
|
parser.add_argument('--result_dir', default='./temp/', type=str, help='Directory for restored results') |
|
parser.add_argument('--task', required=True, type=str, help='Task to run', choices=['Motion_Deblurring', |
|
'Single_Image_Defocus_Deblurring', |
|
'Deraining', |
|
'Real_Denoising', |
|
'Gaussian_Gray_Denoising', |
|
'Gaussian_Color_Denoising']) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
def get_weights_and_parameters(task, parameters): |
|
if task == 'Motion_Deblurring': |
|
weights = os.path.join('Motion_Deblurring', 'pretrained_models', 'motion_deblurring.pth') |
|
elif task == 'Single_Image_Defocus_Deblurring': |
|
weights = os.path.join('Defocus_Deblurring', 'pretrained_models', 'single_image_defocus_deblurring.pth') |
|
elif task == 'Deraining': |
|
weights = os.path.join('Deraining', 'pretrained_models', 'deraining.pth') |
|
elif task == 'Real_Denoising': |
|
weights = os.path.join('Denoising', 'pretrained_models', 'real_denoising.pth') |
|
parameters['LayerNorm_type'] = 'BiasFree' |
|
return weights, parameters |
|
|
|
task = args.task |
|
out_dir = os.path.join(args.result_dir, task) |
|
|
|
os.makedirs(out_dir, exist_ok=True) |
|
|
|
|
|
parameters = {'inp_channels':3, 'out_channels':3, 'dim':48, 'num_blocks':[4,6,6,8], 'num_refinement_blocks':4, 'heads':[1,2,4,8], 'ffn_expansion_factor':2.66, 'bias':False, 'LayerNorm_type':'WithBias', 'dual_pixel_task':False} |
|
weights, parameters = get_weights_and_parameters(task, parameters) |
|
|
|
load_arch = run_path(os.path.join('basicsr', 'models', 'archs', 'restormer_arch.py')) |
|
model = load_arch['Restormer'](**parameters) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
model = model.to(device) |
|
checkpoint = torch.load(weights) |
|
model.load_state_dict(checkpoint['params']) |
|
|
|
model.eval() |
|
|
|
|
|
img_multiple_of = 8 |
|
|
|
|
|
with torch.inference_mode(): |
|
|
|
img = cv2.cvtColor(cv2.imread(args.input_path), cv2.COLOR_BGR2RGB) |
|
|
|
input_ = torch.from_numpy(img).float().div(255.).permute(2,0,1).unsqueeze(0).to(device) |
|
|
|
|
|
h,w = input_.shape[2], input_.shape[3] |
|
H,W = ((h+img_multiple_of)//img_multiple_of)*img_multiple_of, ((w+img_multiple_of)//img_multiple_of)*img_multiple_of |
|
padh = H-h if h%img_multiple_of!=0 else 0 |
|
padw = W-w if w%img_multiple_of!=0 else 0 |
|
input_ = F.pad(input_, (0,padw,0,padh), 'reflect') |
|
|
|
restored = torch.clamp(model(input_),0,1) |
|
|
|
|
|
restored = img_as_ubyte(restored[:,:,:h,:w].permute(0, 2, 3, 1).cpu().detach().numpy()[0]) |
|
|
|
cv2.imwrite(os.path.join(out_dir, os.path.split(args.input_path)[-1]),cv2.cvtColor(restored, cv2.COLOR_RGB2BGR)) |
|
|