File size: 4,157 Bytes
3e9df0c
6ec98d8
 
 
 
 
 
3e9df0c
c86bde4
6ec98d8
 
c55986d
6ec98d8
c86bde4
 
 
 
 
 
 
6ec98d8
 
c86bde4
 
c55986d
6ec98d8
b9c32e6
6ec98d8
 
 
 
c86bde4
6ec98d8
 
 
 
 
 
 
c86bde4
 
 
 
 
b9c32e6
6ec98d8
 
b9c32e6
 
 
c1dbba4
6ec98d8
 
 
 
 
 
 
c86bde4
6ec98d8
c86bde4
 
b9c32e6
6ec98d8
 
b9c32e6
c86bde4
b9c32e6
 
6ec98d8
 
 
b9c32e6
c86bde4
6ec98d8
 
c86bde4
6ec98d8
b9c32e6
c86bde4
6ec98d8
 
b9c32e6
 
 
c1dbba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f52a14b
5847e9e
 
c62d4d9
b9c32e6
c86bde4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path

# Load model and feature extractor
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")

def process_image(image_path):
    image_path = Path(image_path) if isinstance(image_path, str) else image_path
    try:
        image_raw = Image.open(image_path).convert("RGB")
    except Exception as e:
        return f"Error loading image: {e}"

    # Resize while maintaining aspect ratio
    image = image_raw.resize(
        (800, int(800 * image_raw.size[1] / image_raw.size[0])),
        Image.Resampling.LANCZOS
    )

    encoding = feature_extractor(image, return_tensors="pt")
    
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # Normalize depth image
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    ).squeeze()
    output = prediction.cpu().numpy()
    
    if np.max(output) > 0:
        depth_image = (output * 255 / np.max(output)).astype('uint8')
    else:
        depth_image = np.zeros_like(output, dtype='uint8')  # Handle empty output
    
    try:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
    except Exception:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
    
    return [Image.fromarray(depth_image), gltf_path]

def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
    depth_o3d = o3d.geometry.Image(depth_image)
    image_o3d = o3d.geometry.Image(rgb_image)
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        image_o3d, depth_o3d, convert_rgb_to_intensity=False)

    w, h = depth_image.shape[1], depth_image.shape[0]
    camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
    camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)

    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
    pcd.estimate_normals(
        search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
    pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.]))

    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug):
        mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=depth, width=0, scale=1.1, linear_fit=True)

    voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
    mesh = mesh_raw.simplify_vertex_clustering(voxel_size=voxel_size)

    bbox = pcd.get_axis_aligned_bounding_box()
    mesh_crop = mesh.crop(bbox)
    
    gltf_path = f'./{image_path.stem}.gltf'
    o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
    
    return gltf_path

title = "Zero-shot Depth Estimation with DPT + 3D Point Cloud"
description = "DPT model predicts depth from an image, followed by 3D Point Cloud reconstruction."

with gr.Blocks() as iface:
    gr.Markdown("# Zero-shot Depth Estimation with DPT + 3D Point Cloud")
    with gr.Row():
        image_input = gr.Image(type="filepath", label="Input Image")
        depth_output = gr.Image(label="Predicted Depth", type="pil")
    gltf_output = gr.File(label="Download 3D gLTF")

    # Embed an iframe for previewing the .gltf
    with gr.Row():
        gr.HTML('<iframe id="gltf-viewer" width="100%" height="400px"></iframe>')

    def update_gltf_viewer(image_path):
        gltf_path = process_image(image_path)[1]
        iframe_html = f'''
        <script>
            document.getElementById('gltf-viewer').src = 'https://gltf-viewer.donmccurdy.com/?url=file://{gltf_path}';
        </script>
        '''
        return process_image(image_path)[0], gltf_path, iframe_html

    image_input.change(update_gltf_viewer, inputs=[image_input], outputs=[depth_output, gltf_output, gr.HTML()])

iface.launch()