Spaces:
Runtime error
Runtime error
Commit
·
a9bc837
1
Parent(s):
cad98a9
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
-
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
5 |
from wordcloud import WordCloud
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
|
8 |
-
|
|
|
9 |
def __init__(self):
|
10 |
self.sizes = list(whisper._MODELS.keys())
|
11 |
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
@@ -13,10 +13,14 @@ class GradioInference():
|
|
13 |
self.loaded_model = whisper.load_model(self.current_size)
|
14 |
self.yt = None
|
15 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
16 |
-
|
17 |
# Initialize VoiceLabT5 model and tokenizer
|
18 |
-
self.keyword_model = T5ForConditionalGeneration.from_pretrained(
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Sentiment Classifier
|
22 |
self.classifier = pipeline("text-classification")
|
@@ -32,35 +36,46 @@ class GradioInference():
|
|
32 |
if size != self.current_size:
|
33 |
self.loaded_model = whisper.load_model(size)
|
34 |
self.current_size = size
|
35 |
-
|
36 |
results = self.loaded_model.transcribe(path, language=lang)
|
37 |
-
|
38 |
# Perform summarization on the transcription
|
39 |
-
transcription_summary = self.summarizer(
|
|
|
|
|
40 |
|
41 |
# Extract keywords using VoiceLabT5
|
42 |
task_prefix = "Keywords: "
|
43 |
input_sequence = task_prefix + results["text"]
|
44 |
-
input_ids = self.keyword_tokenizer(
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
-
keywords = [x.strip() for x in predicted.split(
|
48 |
|
49 |
label = self.classifier(results["text"])[0]["label"]
|
50 |
wordcloud = WordCloud().generate(results["text"])
|
51 |
wordcloud_image = wordcloud.to_image()
|
52 |
-
|
53 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def populate_metadata(self, link):
|
56 |
self.yt = YouTube(link)
|
57 |
return self.yt.thumbnail_url, self.yt.title
|
58 |
|
59 |
-
|
60 |
def from_audio_input(self, lang, size, audio_file):
|
61 |
if lang == "none":
|
62 |
lang = None
|
63 |
-
|
64 |
if size != self.current_size:
|
65 |
self.loaded_model = whisper.load_model(size)
|
66 |
self.current_size = size
|
@@ -68,21 +83,35 @@ class GradioInference():
|
|
68 |
results = self.loaded_model.transcribe(audio_file, language=lang)
|
69 |
|
70 |
# Perform summarization on the transcription
|
71 |
-
transcription_summary = self.summarizer(
|
|
|
|
|
72 |
|
73 |
# Extract keywords using VoiceLabT5
|
74 |
task_prefix = "Keywords: "
|
75 |
input_sequence = task_prefix + results["text"]
|
76 |
-
input_ids = self.keyword_tokenizer(
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
-
keywords = [x.strip() for x in predicted.split(
|
80 |
|
81 |
label = self.classifier(results["text"])[0]["label"]
|
82 |
-
wordcloud = WordCloud(width=800, height=400, background_color=
|
|
|
|
|
83 |
wordcloud_image = wordcloud.to_image()
|
84 |
-
|
85 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
gio = GradioInference()
|
@@ -107,62 +136,106 @@ with block as demo:
|
|
107 |
with gr.Tab("From YouTube"):
|
108 |
with gr.Box():
|
109 |
with gr.Row().style(equal_height=True):
|
110 |
-
size = gr.Dropdown(
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
title = gr.Label(label="Video Title")
|
114 |
with gr.Row().style(equal_height=True):
|
115 |
img = gr.Image(label="Thumbnail")
|
116 |
-
text = gr.Textbox(
|
|
|
|
|
|
|
|
|
117 |
with gr.Row().style(equal_height=True):
|
118 |
-
summary = gr.Textbox(
|
119 |
-
|
|
|
|
|
|
|
|
|
120 |
label = gr.Label(label="Sentiment Analysis")
|
121 |
-
with gr.Row().style(equal_height=True):
|
122 |
# Display the Word Cloud
|
123 |
wordcloud_image = gr.Image()
|
124 |
with gr.Row().style(equal_height=True):
|
125 |
-
clear = gr.ClearButton(
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
129 |
|
130 |
with gr.Tab("From Audio file"):
|
131 |
with gr.Box():
|
132 |
with gr.Row().style(equal_height=True):
|
133 |
-
size = gr.Dropdown(
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
audio_file = gr.Audio(type="filepath")
|
136 |
with gr.Row().style(equal_height=True):
|
137 |
-
text = gr.Textbox(
|
|
|
|
|
|
|
|
|
138 |
with gr.Row().style(equal_height=True):
|
139 |
-
summary = gr.Textbox(
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
label = gr.Label(label="Sentiment Analysis")
|
142 |
with gr.Row().style(equal_height=True):
|
143 |
clear = gr.ClearButton([text], scale=1)
|
144 |
-
btn = gr.Button(
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
with block:
|
149 |
gr.Markdown("### Video Examples")
|
150 |
gr.Examples(["https://www.youtube.com/shorts/xDNzz8yAH7I"], inputs=link)
|
151 |
-
|
152 |
gr.Markdown("About the app:")
|
153 |
-
|
154 |
with gr.Accordion("What is YouTube Insights?", open=False):
|
155 |
-
|
156 |
-
|
|
|
|
|
157 |
with gr.Accordion("How does it work?", open=False):
|
158 |
-
|
|
|
|
|
159 |
|
160 |
-
gr.HTML(
|
|
|
161 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
162 |
<p style="margin-bottom: 10px; font-size: 96%">
|
163 |
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
|
164 |
</p>
|
165 |
</div>
|
166 |
-
"""
|
|
|
167 |
|
168 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
+
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration
|
5 |
from wordcloud import WordCloud
|
|
|
6 |
|
7 |
+
|
8 |
+
class GradioInference:
|
9 |
def __init__(self):
|
10 |
self.sizes = list(whisper._MODELS.keys())
|
11 |
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
|
|
13 |
self.loaded_model = whisper.load_model(self.current_size)
|
14 |
self.yt = None
|
15 |
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
16 |
+
|
17 |
# Initialize VoiceLabT5 model and tokenizer
|
18 |
+
self.keyword_model = T5ForConditionalGeneration.from_pretrained(
|
19 |
+
"Voicelab/vlt5-base-keywords"
|
20 |
+
)
|
21 |
+
self.keyword_tokenizer = T5Tokenizer.from_pretrained(
|
22 |
+
"Voicelab/vlt5-base-keywords"
|
23 |
+
)
|
24 |
|
25 |
# Sentiment Classifier
|
26 |
self.classifier = pipeline("text-classification")
|
|
|
36 |
if size != self.current_size:
|
37 |
self.loaded_model = whisper.load_model(size)
|
38 |
self.current_size = size
|
39 |
+
|
40 |
results = self.loaded_model.transcribe(path, language=lang)
|
41 |
+
|
42 |
# Perform summarization on the transcription
|
43 |
+
transcription_summary = self.summarizer(
|
44 |
+
results["text"], max_length=130, min_length=30, do_sample=False
|
45 |
+
)
|
46 |
|
47 |
# Extract keywords using VoiceLabT5
|
48 |
task_prefix = "Keywords: "
|
49 |
input_sequence = task_prefix + results["text"]
|
50 |
+
input_ids = self.keyword_tokenizer(
|
51 |
+
input_sequence, return_tensors="pt", truncation=False
|
52 |
+
).input_ids
|
53 |
+
output = self.keyword_model.generate(
|
54 |
+
input_ids, no_repeat_ngram_size=3, num_beams=4
|
55 |
+
)
|
56 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
+
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
58 |
|
59 |
label = self.classifier(results["text"])[0]["label"]
|
60 |
wordcloud = WordCloud().generate(results["text"])
|
61 |
wordcloud_image = wordcloud.to_image()
|
62 |
+
|
63 |
+
return (
|
64 |
+
results["text"],
|
65 |
+
transcription_summary[0]["summary_text"],
|
66 |
+
keywords,
|
67 |
+
label,
|
68 |
+
wordcloud_image,
|
69 |
+
)
|
70 |
|
71 |
def populate_metadata(self, link):
|
72 |
self.yt = YouTube(link)
|
73 |
return self.yt.thumbnail_url, self.yt.title
|
74 |
|
|
|
75 |
def from_audio_input(self, lang, size, audio_file):
|
76 |
if lang == "none":
|
77 |
lang = None
|
78 |
+
|
79 |
if size != self.current_size:
|
80 |
self.loaded_model = whisper.load_model(size)
|
81 |
self.current_size = size
|
|
|
83 |
results = self.loaded_model.transcribe(audio_file, language=lang)
|
84 |
|
85 |
# Perform summarization on the transcription
|
86 |
+
transcription_summary = self.summarizer(
|
87 |
+
results["text"], max_length=130, min_length=30, do_sample=False
|
88 |
+
)
|
89 |
|
90 |
# Extract keywords using VoiceLabT5
|
91 |
task_prefix = "Keywords: "
|
92 |
input_sequence = task_prefix + results["text"]
|
93 |
+
input_ids = self.keyword_tokenizer(
|
94 |
+
input_sequence, return_tensors="pt", truncation=False
|
95 |
+
).input_ids
|
96 |
+
output = self.keyword_model.generate(
|
97 |
+
input_ids, no_repeat_ngram_size=3, num_beams=4
|
98 |
+
)
|
99 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
100 |
+
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
101 |
|
102 |
label = self.classifier(results["text"])[0]["label"]
|
103 |
+
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(
|
104 |
+
results["text"]
|
105 |
+
)
|
106 |
wordcloud_image = wordcloud.to_image()
|
107 |
+
|
108 |
+
return (
|
109 |
+
results["text"],
|
110 |
+
transcription_summary[0]["summary_text"],
|
111 |
+
keywords,
|
112 |
+
label,
|
113 |
+
wordcloud_image,
|
114 |
+
)
|
115 |
|
116 |
|
117 |
gio = GradioInference()
|
|
|
136 |
with gr.Tab("From YouTube"):
|
137 |
with gr.Box():
|
138 |
with gr.Row().style(equal_height=True):
|
139 |
+
size = gr.Dropdown(
|
140 |
+
label="Model Size", choices=gio.sizes, value="base"
|
141 |
+
)
|
142 |
+
lang = gr.Dropdown(
|
143 |
+
label="Language (Optional)", choices=gio.langs, value="none"
|
144 |
+
)
|
145 |
+
link = gr.Textbox(
|
146 |
+
label="YouTube Link", placeholder="Enter YouTube link..."
|
147 |
+
)
|
148 |
title = gr.Label(label="Video Title")
|
149 |
with gr.Row().style(equal_height=True):
|
150 |
img = gr.Image(label="Thumbnail")
|
151 |
+
text = gr.Textbox(
|
152 |
+
label="Transcription",
|
153 |
+
placeholder="Transcription Output...",
|
154 |
+
lines=10,
|
155 |
+
).style(show_copy_button=True, container=True)
|
156 |
with gr.Row().style(equal_height=True):
|
157 |
+
summary = gr.Textbox(
|
158 |
+
label="Summary", placeholder="Summary Output...", lines=5
|
159 |
+
).style(show_copy_button=True, container=True)
|
160 |
+
keywords = gr.Textbox(
|
161 |
+
label="Keywords", placeholder="Keywords Output...", lines=5
|
162 |
+
).style(show_copy_button=True, container=True)
|
163 |
label = gr.Label(label="Sentiment Analysis")
|
164 |
+
with gr.Row().style(equal_height=True):
|
165 |
# Display the Word Cloud
|
166 |
wordcloud_image = gr.Image()
|
167 |
with gr.Row().style(equal_height=True):
|
168 |
+
clear = gr.ClearButton(
|
169 |
+
[link, title, img, text, summary, keywords, label], scale=1
|
170 |
+
)
|
171 |
+
btn = gr.Button("Get video insights", variant="primary", scale=1)
|
172 |
+
btn.click(
|
173 |
+
gio,
|
174 |
+
inputs=[link, lang, size],
|
175 |
+
outputs=[text, summary, keywords, label, wordcloud_image],
|
176 |
+
)
|
177 |
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
178 |
|
179 |
with gr.Tab("From Audio file"):
|
180 |
with gr.Box():
|
181 |
with gr.Row().style(equal_height=True):
|
182 |
+
size = gr.Dropdown(
|
183 |
+
label="Model Size", choices=gio.sizes, value="base"
|
184 |
+
)
|
185 |
+
lang = gr.Dropdown(
|
186 |
+
label="Language (Optional)", choices=gio.langs, value="none"
|
187 |
+
)
|
188 |
audio_file = gr.Audio(type="filepath")
|
189 |
with gr.Row().style(equal_height=True):
|
190 |
+
text = gr.Textbox(
|
191 |
+
label="Transcription",
|
192 |
+
placeholder="Transcription Output...",
|
193 |
+
lines=10,
|
194 |
+
).style(show_copy_button=True, container=False)
|
195 |
with gr.Row().style(equal_height=True):
|
196 |
+
summary = gr.Textbox(
|
197 |
+
label="Summary", placeholder="Summary Output", lines=5
|
198 |
+
)
|
199 |
+
keywords = gr.Textbox(
|
200 |
+
label="Keywords", placeholder="Keywords Output", lines=5
|
201 |
+
)
|
202 |
label = gr.Label(label="Sentiment Analysis")
|
203 |
with gr.Row().style(equal_height=True):
|
204 |
clear = gr.ClearButton([text], scale=1)
|
205 |
+
btn = gr.Button(
|
206 |
+
"Get video insights", variant="primary", scale=1
|
207 |
+
) # Updated button label
|
208 |
+
btn.click(
|
209 |
+
gio.from_audio_input,
|
210 |
+
inputs=[lang, size, audio_file],
|
211 |
+
outputs=[text, summary, keywords, label, wordcloud_image],
|
212 |
+
)
|
213 |
+
|
214 |
|
215 |
with block:
|
216 |
gr.Markdown("### Video Examples")
|
217 |
gr.Examples(["https://www.youtube.com/shorts/xDNzz8yAH7I"], inputs=link)
|
218 |
+
|
219 |
gr.Markdown("About the app:")
|
220 |
+
|
221 |
with gr.Accordion("What is YouTube Insights?", open=False):
|
222 |
+
gr.Markdown(
|
223 |
+
"YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files."
|
224 |
+
)
|
225 |
+
|
226 |
with gr.Accordion("How does it work?", open=False):
|
227 |
+
gr.Markdown(
|
228 |
+
"Works by using OpenAI's Whisper, DistilBART for summarization and VoiceLabT5 for Keyword Extraction."
|
229 |
+
)
|
230 |
|
231 |
+
gr.HTML(
|
232 |
+
"""
|
233 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
234 |
<p style="margin-bottom: 10px; font-size: 96%">
|
235 |
2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
|
236 |
</p>
|
237 |
</div>
|
238 |
+
"""
|
239 |
+
)
|
240 |
|
241 |
+
demo.launch()
|