intone_mvp / app.py
stevenhillis's picture
no share
aaca925
raw
history blame
2.9 kB
import json
import os
import requests
import gradio as gr
import numpy as np
base_url = "https://api.sandbox.deepgram.com/nlu"
token_str = os.environ['DG_TOKEN']
def tts_fn(text, prompt_audio, pitch_steps, inference_steps, inference_temperature):
texts = [text]
prompt_audio = np.reshape(prompt_audio[1], (1, 1, -1)).astype(np.float32, order='C') / 32768.0
response = requests.post(
f'{base_url}',
files=[('texts', ('texts', json.dumps(texts), 'application/json')), ('prompt_audio', ('prompt_audio', json.dumps(prompt_audio.tolist()), 'application/json'))],
params={'synthesize': 'true', 'pitch_steps': int(pitch_steps), 'soundstorm_steps': inference_steps, 'temperature': inference_temperature},
headers={
'Authorization': f'Token {token_str}'
},
).json()
try:
sample_rate = int(response['results'][0]['sample_rate'])
audio = (np.array(response['results'][0]['audio']).transpose() * 32767).astype(np.int16)
except Exception:
print(response)
return (sample_rate, audio)
demo_files = ['demo_files/man.wav', 'demo_files/woman.wav', 'demo_files/man_2.wav', 'demo_files/woman_2.wav', 'demo_files/meditation.wav']
app = gr.Blocks()
with app:
with gr.Tab("TTS MVP"):
with gr.Row():
with gr.Column():
pangram = "The beige hue on the waters of the loch impressed all, including the French queen, before she heard that symphony again, just as young Arthur wanted."
cherry = "Your request has been processed and the audio is ready for playback."
textbox = gr.TextArea(label="Text", placeholder="Type a sentence here", value=cherry)
prompt_audio = gr.Audio(label="Prompt Audio (first 3 seconds of selection)", source='upload')
examples = gr.Examples(label='Sample Speakers', examples=demo_files, inputs=prompt_audio)
# speed = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Speed")
pitch_steps = gr.Slider(minimum=-24, maximum=24, value=0, step=1, label="Pitch Steps: 12 to an octave")
# variability = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Variability")
inference_steps = gr.Slider(minimum=1, maximum=32, value=1, step=1, label="Inference Steps: quality vs latency tradeoff. Results are sometimes unstable for values >1.")
inference_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Temperature: fidelity vs variability tradeoff")
with gr.Column():
audio_output = gr.Audio(label="Output Audio", elem_id='tts-audio')
btn = gr.Button("Generate")
btn.click(tts_fn, inputs=[textbox, prompt_audio, pitch_steps, inference_steps, inference_temperature], outputs=[audio_output])
app.launch()