File size: 4,438 Bytes
92e6d85
 
 
 
 
 
 
 
 
 
 
 
 
d1488a7
92e6d85
 
 
 
 
 
 
 
 
 
 
 
 
 
92f3574
 
 
 
92e6d85
92f3574
 
ae3548a
92f3574
 
 
 
92e6d85
ae3548a
92e6d85
 
3034b25
 
92e6d85
 
 
 
 
 
 
 
 
 
 
 
08dd082
 
 
 
d1488a7
d9585d8
08dd082
d1488a7
92e6d85
d1488a7
 
 
 
 
 
92e6d85
dd1a771
92e6d85
ae3548a
 
 
 
 
dd1a771
 
ae3548a
92e6d85
 
ae3548a
 
 
d9585d8
ae3548a
 
 
dd1a771
 
ae3548a
 
dd1a771
ae3548a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
import requests
from PIL import Image
import numpy as np
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
from transformers import pipeline
import openai
from io import BytesIO
import os
import tempfile
from diffusers import StableDiffusionPipeline
import torch
import base64

openai.api_key = os.getenv("OPENAI_API_KEY")

# Load models and set up GPT-3 pipeline
extractor = AutoFeatureExtractor.from_pretrained("stchakman/Fridge_Items_Model")
model = AutoModelForImageClassification.from_pretrained("stchakman/Fridge_Items_Model")
#gpt3 = pipeline("text-davinci-003", api_key="your_openai_api_key")

# Map indices to ingredient names
term_variables = { "Apples", "Asparagus", "Avocado", "Bananas", "BBQ sauce", "Beans", "Beef", "Beer", "Berries", "Bison", "Bread", "Broccoli", "Cauliflower", "Celery", "Cheese", "Chicken", "Chocolate", "Citrus fruits", "Clams", "Cold cuts", "Corn", "Cottage cheese", "Crab", "Cream", "Cream cheese", "Cucumbers", "Duck", "Eggs", "Energy drinks", "Fish", "Frozen vegetables", "Frozen meals", "Garlic", "Grapes", "Ground beef", "Ground chicken", "Ham", "Hot sauce", "Hummus", "Ice cream", "Jams", "Jerky", "Kiwi", "Lamb", "Lemons", "Lobster", "Mangoes", "Mayonnaise", "Melons", "Milk", "Mussels", "Mustard", "Nectarines", "Onions", "Oranges", "Peaches", "Peas", "Peppers", "Pineapple", "Pizza", "Plums", "Pork", "Potatoes", "Salad dressings", "Salmon", "Shrimp", "Sour cream", "Soy sauce", "Spinach", "Squash", "Steak", "Sweet potatoes", "Frozen Fruits", "Tilapia", "Tomatoes", "Tuna", "Turkey", "Venison", "Water bottles", "Wine", "Yogurt", "Zucchini" }
ingredient_names = list(term_variables)

classifier = pipeline("image-classification", model="stchakman/Fridge_Items_Model")

def extract_ingredients(uploaded_image):
    temp_file = tempfile.NamedTemporaryFile(delete=False)
    temp_file.write(uploaded_image.getvalue())
    temp_file.flush()

    image = Image.open(temp_file.name)
    preds = classifier(temp_file.name)
    ingredients = [pred["label"] for pred in preds]

    temp_file.close()
    os.unlink(temp_file.name)
    return ingredients


def generate_dishes(ingredients, n=3, max_tokens=150, temperature=0.7):
    ingredients_str = ', '.join(ingredients)
    prompt = f"I have {ingredients_str} Please return the name of a dish I can make followed by the instructions on how to prepare that dish in bullet point form separate the name of the dish and instructions by ':'"


    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=temperature,
        n=n
    )

    dishes = [choice.text.strip() for choice in response.choices]
    return dishes

model_id = "runwayml/stable-diffusion-v1-5"
def generate_image(prompt):
    with st.spinner("Generating image..."):
        pipe = StableDiffusionPipeline.from_pretrained(model_id)
    # If you have a GPU available, uncomment the following line
        pipe = pipe.to("cuda")
        image = pipe(prompt).images[0]
    return image

def get_image_download_link(image, filename, text):
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    href = f'<a download="{filename}" href="data:image/jpeg;base64,{img_str}" target="_blank">{text}</a>'
    return href

st.title("Fridge 2 Dish App")

uploaded_file = st.file_uploader("Upload an image of your ingredients", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
    ingredients = extract_ingredients(uploaded_file)
    st.write("Ingredients found:")
    st.write(", ".join(ingredients))

    st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
    
    suggested_dishes = generate_dishes(ingredients)

    if len(suggested_dishes) > 0:
        st.write("Suggested dishes based on the ingredients:")
        for idx, dish in enumerate(suggested_dishes):
            st.write(f"{idx + 1}. {dish}")

        for idx, dish in enumerate(suggested_dishes[:3]):
            if st.button(f"Generate Image for Dish {idx + 1}"):
                dish_image = generate_image(dish.split(':')[0])
                st.image(dish_image, caption=dish.split(':')[0], use_column_width=True)
    else:
        st.write("No dishes found for the given ingredients.")