# ISOM5240 Project: Amazon Review Sentiment Analysis ## Team Members - Jishen Wang - Shen Yishan ## Project Structure ``` ISOM5240_Project/ ├── README.md # Project overview and setup instructions ├── requirements.txt # Python dependencies ├── docs/ # Documentation │ ├── project_report.md # Project report in markdown format │ └── project_report.pdf # Project report in PDF format ├── src/ # Source code │ ├── app.py # Streamlit web application │ ├── model.py # Sentiment analysis model implementation │ ├── preprocessing.py # Text preprocessing utilities │ └── utils.py # General utility functions ├── data/ # Data directory for storing datasets └── notebooks/ # Jupyter notebooks for analysis ``` ## Setup Instructions 1. Clone this repository 2. Install dependencies: ```bash pip install -r requirements.txt ``` ## Running the Application 1. Navigate to the project directory: ```bash cd ISOM5240_Project ``` 2. Run the Streamlit application: ```bash streamlit run src/app.py ``` 3. Access the web interface at: http://localhost:8501 ## Documentation - Detailed project documentation can be found in the `docs` directory - The project report is available in both markdown and PDF formats ## Model Information - Using HuggingFace's LiYuan/amazon-review-sentiment-analysis model - Multi-language support for sentiment analysis - Real-time analysis through web interface ## Features 1. Sentiment analysis of product reviews 2. Multi-language support 3. Rating prediction (1-5 stars) 4. Web interface for real-time analysis 5. Batch processing capabilities 6. Results visualization and export options Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference