Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,50 +3,114 @@ import streamlit as st
|
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import io
|
|
|
|
|
6 |
|
7 |
-
|
8 |
# function part
|
9 |
def generate_image_caption(image):
|
10 |
-
"""Generates a caption for the given image using a pre-trained model.
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
12 |
result = img2caption(image)
|
13 |
return result[0]['generated_text']
|
14 |
|
15 |
def text2story(text):
|
16 |
-
"""Generates a children's story from text input
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
story_prompt = f"Create a funny 100-word story for 8-year-olds about: {text}. Include: "
|
18 |
story_prompt += "1) A silly character 2) Magical object 3) Sound effects 4) Happy ending"
|
19 |
|
|
|
20 |
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
|
|
|
|
21 |
story_text = pipe(
|
22 |
story_prompt,
|
23 |
-
max_new_tokens=200,
|
24 |
-
temperature=0.9,
|
25 |
-
top_k=50
|
26 |
)[0]['generated_text']
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def main():
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
|
|
33 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
34 |
|
35 |
if uploaded_image:
|
36 |
-
|
37 |
-
|
|
|
38 |
|
|
|
39 |
with st.spinner("β¨ Analyzing image..."):
|
40 |
caption = generate_image_caption(image)
|
41 |
|
|
|
42 |
st.subheader("Image Understanding")
|
43 |
st.write(caption)
|
44 |
|
|
|
45 |
with st.spinner("π Writing story..."):
|
46 |
story = text2story(caption)
|
47 |
|
|
|
48 |
st.subheader("Magical Story")
|
49 |
st.write(story)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
if __name__ == "__main__":
|
|
|
52 |
main()
|
|
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf # For handling audio file operations
|
8 |
|
|
|
9 |
# function part
|
10 |
def generate_image_caption(image):
|
11 |
+
"""Generates a caption for the given image using a pre-trained model.
|
12 |
+
Args:
|
13 |
+
image: PIL Image object
|
14 |
+
Returns:
|
15 |
+
str: Generated caption text
|
16 |
+
"""
|
17 |
+
# Initialize image-to-text pipeline with BLIP model
|
18 |
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
19 |
result = img2caption(image)
|
20 |
return result[0]['generated_text']
|
21 |
|
22 |
def text2story(text):
|
23 |
+
"""Generates a children's story from text input using story generation model.
|
24 |
+
Args:
|
25 |
+
text: Input text prompt
|
26 |
+
Returns:
|
27 |
+
str: Generated story text
|
28 |
+
"""
|
29 |
+
# Craft prompt with specific requirements for children's stories
|
30 |
story_prompt = f"Create a funny 100-word story for 8-year-olds about: {text}. Include: "
|
31 |
story_prompt += "1) A silly character 2) Magical object 3) Sound effects 4) Happy ending"
|
32 |
|
33 |
+
# Initialize text generation pipeline
|
34 |
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
35 |
+
|
36 |
+
# Generate story with controlled randomness parameters
|
37 |
story_text = pipe(
|
38 |
story_prompt,
|
39 |
+
max_new_tokens=200, # Limit story length
|
40 |
+
temperature=0.9, # Control randomness (higher = more creative)
|
41 |
+
top_k=50 # Limit vocabulary choices
|
42 |
)[0]['generated_text']
|
43 |
+
|
44 |
+
# Clean output by splitting at the required ending marker
|
45 |
+
return story_text.split("Happy ending")[-1].strip()
|
46 |
+
|
47 |
+
def story_to_speech(story_text):
|
48 |
+
"""Converts story text to audio using text-to-speech model.
|
49 |
+
Args:
|
50 |
+
story_text: Story text to convert
|
51 |
+
Returns:
|
52 |
+
BytesIO: Audio data in WAV format
|
53 |
+
"""
|
54 |
+
# Initialize Bark text-to-speech pipeline
|
55 |
+
tts_pipe = pipeline("text-to-speech", model="suno/bark-small")
|
56 |
+
|
57 |
+
# Generate audio array (numpy array of sound samples)
|
58 |
+
audio_output = tts_pipe(story_text, max_length=400) # Limit text length for stability
|
59 |
+
|
60 |
+
# Convert numpy array to playable audio bytes
|
61 |
+
audio_bytes = io.BytesIO()
|
62 |
+
sf.write(
|
63 |
+
audio_bytes,
|
64 |
+
audio_output["audio"],
|
65 |
+
audio_output["sampling_rate"],
|
66 |
+
format='WAV'
|
67 |
+
)
|
68 |
+
audio_bytes.seek(0) # Reset pointer for Streamlit audio player
|
69 |
+
|
70 |
+
return audio_bytes
|
71 |
|
72 |
def main():
|
73 |
+
"""Main function for Streamlit application workflow"""
|
74 |
+
# Configure page header
|
75 |
+
st.title("π Image Story Generator with Audio")
|
76 |
+
st.write("Upload an image to get a magical story read aloud!")
|
77 |
|
78 |
+
# Image upload widget (supports JPG/PNG)
|
79 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
80 |
|
81 |
if uploaded_image:
|
82 |
+
# Process image
|
83 |
+
image = Image.open(uploaded_image).convert("RGB") # Ensure RGB format
|
84 |
+
st.image(image, use_column_width=True) # Display uploaded image
|
85 |
|
86 |
+
# Image analysis section
|
87 |
with st.spinner("β¨ Analyzing image..."):
|
88 |
caption = generate_image_caption(image)
|
89 |
|
90 |
+
# Display image understanding
|
91 |
st.subheader("Image Understanding")
|
92 |
st.write(caption)
|
93 |
|
94 |
+
# Story generation section
|
95 |
with st.spinner("π Writing story..."):
|
96 |
story = text2story(caption)
|
97 |
|
98 |
+
# Display generated story
|
99 |
st.subheader("Magical Story")
|
100 |
st.write(story)
|
101 |
+
|
102 |
+
# Audio generation section
|
103 |
+
if st.button("π§ Read Story Aloud"):
|
104 |
+
with st.spinner("π Generating audio..."):
|
105 |
+
try:
|
106 |
+
# Convert story to audio (trim to 400 characters for model stability)
|
107 |
+
audio_bytes = story_to_speech(story[:400])
|
108 |
+
|
109 |
+
# Display audio player
|
110 |
+
st.audio(audio_bytes, format="audio/wav")
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Error generating audio: {str(e)}")
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
+
# Start the Streamlit application
|
116 |
main()
|