File size: 5,865 Bytes
8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d 12faaae 8a1304d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
# Set up the Streamlit page - this must be the first st command
st.set_page_config(
page_title="Paper Classification Service",
page_icon="π",
layout="wide"
)
import PyPDF2
import io
from model import PaperClassifier
# Initialize the classifier with model selection
@st.cache_resource
def load_classifier(model_type):
return PaperClassifier(model_type)
# Cache the PDF text extraction
@st.cache_data
def extract_pdf_text(pdf_bytes):
"""Extract text from PDF and try to separate title and abstract"""
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
# Try to extract title and abstract
lines = text.split('\n')
title = lines[0] if lines else ""
abstract = "\n".join(lines[1:]) if len(lines) > 1 else ""
return title.strip(), abstract.strip()
# Get available models for selection
available_models = list(PaperClassifier.AVAILABLE_MODELS.keys())
# Add model selection to sidebar
st.sidebar.title("Model Settings")
selected_model = st.sidebar.selectbox(
"Select Model",
available_models,
index=0,
help="Choose the model to use for classification"
)
# Display model information
model_info = PaperClassifier.AVAILABLE_MODELS[selected_model]
st.sidebar.markdown(f"""
### Selected Model
**Name:** {model_info['name']}
**Description:** {model_info['description']}
""")
# Initialize the classifier with selected model
classifier = load_classifier(selected_model)
# Title and description
st.title("π Academic Paper Classification")
st.markdown("""
This service helps you classify academic papers into different categories.
You can either:
- Enter the paper's title and abstract separately
- Upload a PDF file
""")
# Create two columns for input methods
col1, col2 = st.columns(2)
with col1:
st.subheader("Option 1: Manual Input")
# Title input
title_input = st.text_input(
"Paper Title:",
placeholder="Enter the paper title..."
)
# Abstract input
abstract_input = st.text_area(
"Paper Abstract (optional):",
height=200,
placeholder="Enter the paper abstract (optional)..."
)
if st.button("Classify Paper"):
if title_input.strip():
with st.spinner("Classifying..."):
result = classifier.classify_paper(
title=title_input,
abstract=abstract_input if abstract_input.strip() else None
)
st.success("Classification Complete!")
st.write(f"**Input Type:** {result['input_type'].replace('_', ' ').title()}")
st.write(f"**Model Used:** {result['model_used']}")
# Show top categories
st.subheader("Top Categories (95% Confidence)")
total_prob = 0
for cat_info in result['top_categories']:
prob = cat_info['probability']
total_prob += prob
st.progress(prob, text=f"{cat_info['category']} ({cat_info['arxiv_category']}): {prob:.1%}")
st.info(f"Total probability of shown categories: {total_prob:.1%}")
else:
st.warning("Please enter at least the paper title.")
with col2:
st.subheader("Option 2: PDF Upload")
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
if uploaded_file is not None:
if st.button("Classify PDF"):
try:
with st.spinner("Processing PDF..."):
# Extract title and abstract from PDF
title, abstract = extract_pdf_text(uploaded_file.read())
if not title:
st.error("Could not extract title from PDF.")
st.stop()
# Show extracted text
with st.expander("Show extracted text"):
st.write("**Extracted Title:**")
st.write(title)
if abstract:
st.write("**Extracted Abstract:**")
st.write(abstract)
# Classify the paper
result = classifier.classify_paper(
title=title,
abstract=abstract if abstract else None
)
st.success("Classification Complete!")
st.write(f"**Input Type:** {result['input_type'].replace('_', ' ').title()}")
st.write(f"**Model Used:** {result['model_used']}")
# Show top categories
st.subheader("Top Categories (95% Confidence)")
total_prob = 0
for cat_info in result['top_categories']:
prob = cat_info['probability']
total_prob += prob
st.progress(prob, text=f"{cat_info['category']} ({cat_info['arxiv_category']}): {prob:.1%}")
st.info(f"Total probability of shown categories: {total_prob:.1%}")
except Exception as e:
st.error(f"Error processing PDF: {str(e)}")
# Add information about the models
st.sidebar.markdown("---")
st.sidebar.title("Available Models")
st.sidebar.markdown("""
- **DistilBERT**: Fast and lightweight
- **DeBERTa v3**: Advanced performance
- **T5**: Versatile text-to-text
- **RoBERTa**: Strong performance
- **SciBERT**: Specialized for science
""")
# Add footer
st.markdown("---")
st.markdown("Made with β€οΈ using Streamlit and Transformers") |