Doc_Chatbot / app.py
sreesh2804's picture
Update app.py
30f96fe verified
raw
history blame
6.46 kB
import os
import time
import json
import logging
import threading
import gradio as gr
import google.generativeai as genai
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload
from google.oauth2 import service_account
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain.chains import RetrievalQA
from langchain_google_genai import ChatGoogleGenerativeAI
from PyPDF2 import PdfReader
from gtts import gTTS
temp_file_map = {}
# ✅ Configure logging
logging.basicConfig(level=logging.INFO)
# ✅ Load API Keys
logging.info("🔑 Loading API keys...")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY_1")
SERVICE_ACCOUNT_JSON = os.getenv("SERVICE_ACCOUNT_JSON")
if not GOOGLE_API_KEY or not SERVICE_ACCOUNT_JSON:
logging.error("❌ Missing API Key or Service Account JSON.")
raise ValueError("❌ Missing API Key or Service Account JSON. Please add them as environment variables.")
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
SERVICE_ACCOUNT_FILE = json.loads(SERVICE_ACCOUNT_JSON)
SCOPES = ["https://www.googleapis.com/auth/drive"]
FOLDER_ID = "1xqOpwgwUoiJYf9GkeuB4dayme4zJcujf"
creds = service_account.Credentials.from_service_account_info(SERVICE_ACCOUNT_FILE)
drive_service = build("drive", "v3", credentials=creds)
# ✅ Initialize variables
vector_store = None
file_id_map = {}
temp_dir = "./temp_downloads"
os.makedirs(temp_dir, exist_ok=True)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# ✅ Get list of files from Google Drive
def get_files_from_drive():
logging.info("📂 Fetching files from Google Drive...")
query = f"'{FOLDER_ID}' in parents and trashed = false"
results = drive_service.files().list(q=query, fields="files(id, name)").execute()
files = results.get("files", [])
global file_id_map
file_id_map = {file["name"]: file["id"] for file in files}
return list(file_id_map.keys()) if files else []
# ✅ Download file from Google Drive
def download_file(file_id, file_name):
file_path = os.path.join(temp_dir, file_name)
request = drive_service.files().get_media(fileId=file_id)
with open(file_path, "wb") as f:
downloader = MediaIoBaseDownload(f, request)
done = False
while not done:
_, done = downloader.next_chunk()
return file_path
# ✅ Process documents
def process_documents(selected_files):
global vector_store
docs = []
for file_name in selected_files:
file_path = download_file(file_id_map[file_name], file_name)
if file_name.endswith(".pdf"):
loader = PyPDFLoader(file_path)
elif file_name.endswith(".txt"):
loader = TextLoader(file_path)
elif file_name.endswith(".docx"):
loader = Docx2txtLoader(file_path)
else:
logging.warning(f"⚠️ Unsupported file type: {file_name}")
continue
docs.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = text_splitter.split_documents(docs)
vector_store = Chroma.from_documents(split_docs, embeddings)
return "✅ Documents processed successfully!"
# ✅ Query document
def query_document(question):
if vector_store is None:
return "❌ No documents processed.", None
# ✅ Fetch stored documents
stored_docs = vector_store.get()["documents"]
# ✅ Calculate total word count safely
total_words = sum(len(doc.split()) if isinstance(doc, str) else len(doc.page_content.split()) for doc in stored_docs)
# ✅ Dynamically adjust k based on document size
if total_words < 500:
k_value = 3
elif total_words < 2000:
k_value = 5
else:
k_value = 10
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": k_value})
# ✅ Improved prompt for detailed response
detailed_prompt = f"""
Provide a **detailed and structured answer** to the following question.
- Use relevant **examples, key points, and explanations**.
- If applicable, provide **step-by-step analysis** or comparisons.
- Ensure **clarity and completeness**.
**Question:** {question}
"""
# ✅ Dynamically select model based on document size
if total_words < 1000:
model_name = "gemini-2.0-pro-exp-02-05" # More detailed responses for small files
else:
model_name = "gemini-2.0-flash" # Faster processing for large documents
logging.info(f"🧠 Using Model: {model_name} for processing")
model = ChatGoogleGenerativeAI(model=model_name, google_api_key=GOOGLE_API_KEY)
qa_chain = RetrievalQA.from_chain_type(llm=model, retriever=retriever)
response = qa_chain.invoke({"query": detailed_prompt})["result"]
# ✅ Convert response to speech
tts = gTTS(text=response, lang="en")
temp_audio_path = os.path.join(temp_dir, "response.mp3")
tts.save(temp_audio_path)
temp_file_map["response.mp3"] = time.time()
return response, temp_audio_path
# ✅ Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# 📄 AI-Powered Multi-Document Chatbot with Voice Output")
file_dropdown = gr.Dropdown(choices=get_files_from_drive(), label="📂 Select Files", multiselect=True)
refresh_button = gr.Button("🔄 Refresh Files") # 🔄 Add Refresh Button
process_button = gr.Button("🚀 Process Documents")
user_input = gr.Textbox(label="🔎 Ask a Question")
submit_button = gr.Button("💬 Get Answer")
response_output = gr.Textbox(label="📝 Response")
audio_output = gr.Audio(label="🔊 Audio Response")
# 🔄 Function to Refresh File List
def refresh_files():
return gr.update(choices=get_files_from_drive())
# ✅ Connect Refresh Button
refresh_button.click(refresh_files, outputs=file_dropdown)
# ✅ Connect Process Button
process_button.click(process_documents, inputs=file_dropdown, outputs=response_output)
# ✅ Connect Query Button
submit_button.click(query_document, inputs=user_input, outputs=[response_output, audio_output])
demo.launch()