File size: 6,927 Bytes
1a86be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f96fe
 
1a86be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f96fe
1a86be4
b4f2b93
 
 
 
 
 
 
 
 
 
2279cee
 
 
 
 
b4f2b93
2279cee
 
b4f2b93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279cee
b4f2b93
2279cee
b4f2b93
 
 
 
 
2279cee
b4f2b93
2279cee
b4f2b93
 
 
2279cee
 
b4f2b93
 
 
 
 
 
2279cee
 
 
1a86be4
 
 
d77afce
1a86be4
d77afce
1a86be4
d77afce
1a86be4
 
d77afce
1a86be4
 
d77afce
 
 
 
 
 
 
 
 
1a86be4
d77afce
 
1a86be4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import time
import json
import logging
import threading
import gradio as gr
import google.generativeai as genai
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload
from google.oauth2 import service_account
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain.chains import RetrievalQA
from langchain_google_genai import ChatGoogleGenerativeAI
from PyPDF2 import PdfReader
from gtts import gTTS

temp_file_map = {}  

# ✅ Configure logging
logging.basicConfig(level=logging.INFO)

# ✅ Load API Keys
logging.info("🔑 Loading API keys...")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY_1")
SERVICE_ACCOUNT_JSON = os.getenv("SERVICE_ACCOUNT_JSON")

if not GOOGLE_API_KEY or not SERVICE_ACCOUNT_JSON:
    logging.error("❌ Missing API Key or Service Account JSON.")
    raise ValueError("❌ Missing API Key or Service Account JSON. Please add them as environment variables.")

os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
SERVICE_ACCOUNT_FILE = json.loads(SERVICE_ACCOUNT_JSON)
SCOPES = ["https://www.googleapis.com/auth/drive"]
FOLDER_ID = "1xqOpwgwUoiJYf9GkeuB4dayme4zJcujf"
creds = service_account.Credentials.from_service_account_info(SERVICE_ACCOUNT_FILE)
drive_service = build("drive", "v3", credentials=creds)

# ✅ Initialize variables
vector_store = None
file_id_map = {}
temp_dir = "./temp_downloads"
os.makedirs(temp_dir, exist_ok=True)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# ✅ Get list of files from Google Drive
def get_files_from_drive():
    logging.info("📂 Fetching files from Google Drive...")
    query = f"'{FOLDER_ID}' in parents and trashed = false"
    results = drive_service.files().list(q=query, fields="files(id, name)").execute()
    files = results.get("files", [])
    global file_id_map
    file_id_map = {file["name"]: file["id"] for file in files}
    return list(file_id_map.keys()) if files else []

# ✅ Download file from Google Drive
def download_file(file_id, file_name):
    file_path = os.path.join(temp_dir, file_name)
    request = drive_service.files().get_media(fileId=file_id)
    with open(file_path, "wb") as f:
        downloader = MediaIoBaseDownload(f, request)
        done = False
        while not done:
            _, done = downloader.next_chunk()
    return file_path

# ✅ Process documents
def process_documents(selected_files):
    global vector_store
    docs = []
    for file_name in selected_files:
        file_path = download_file(file_id_map[file_name], file_name)
        if file_name.endswith(".pdf"):
            loader = PyPDFLoader(file_path)
        elif file_name.endswith(".txt"):
            loader = TextLoader(file_path)
        elif file_name.endswith(".docx"):
            loader = Docx2txtLoader(file_path)
        else:
            logging.warning(f"⚠️ Unsupported file type: {file_name}")
            continue
        docs.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    split_docs = text_splitter.split_documents(docs)
    vector_store = Chroma.from_documents(split_docs, embeddings)
    return "✅ Documents processed successfully!"

# ✅ Query document


import os
import time
import logging
from gtts import gTTS
from langchain.chains import RetrievalQA
from langchain_google_genai import ChatGoogleGenerativeAI

# ✅ Ensure temp_file_map exists
temp_file_map = {}

def query_document(question):
    if vector_store is None:
        return "❌ No documents processed.", None

    # ✅ Fetch stored documents  
    stored_docs = vector_store.get()["documents"]

    # ✅ Calculate total word count safely  
    total_words = sum(len(doc.split()) if isinstance(doc, str) else len(doc.page_content.split()) for doc in stored_docs)

    # ✅ Categorize file size  
    if total_words < 500:
        file_size_category = "small"
        k_value = 3
    elif total_words < 2000:
        file_size_category = "medium"
        k_value = 5
    else:
        file_size_category = "large"
        k_value = 10

    retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": k_value})

    # ✅ Adjust response detail based on file size  
    if file_size_category == "small":
        prompt_prefix = "Provide a **concise** response focusing on key points."
    elif file_size_category == "medium":
        prompt_prefix = "Provide a **detailed response** with examples and key insights."
    else:
        prompt_prefix = "Provide a **comprehensive and structured response**, including step-by-step analysis and explanations."

    # ✅ Final prompt  
    detailed_prompt = f"""{prompt_prefix}  
    - Ensure clarity and completeness.  
    - Highlight the most relevant information.  
    **Question:** {question}  
    """

    # ✅ Dynamically select model based on file size  
    if file_size_category in ["small", "medium"]:
        model_name = "gemini-2.0-pro-exp-02-05"
    else:
        model_name = "gemini-2.0-flash"

    logging.info(f"🧠 Using Model: {model_name} for {file_size_category} file.")

    model = ChatGoogleGenerativeAI(model=model_name, google_api_key=GOOGLE_API_KEY)
    qa_chain = RetrievalQA.from_chain_type(llm=model, retriever=retriever)
    response = qa_chain.invoke({"query": detailed_prompt})["result"]

    # ✅ Convert response to speech  
    tts = gTTS(text=response, lang="en")
    temp_audio_path = os.path.join(temp_dir, "response.mp3")
    tts.save(temp_audio_path)
    temp_file_map["response.mp3"] = time.time()

    return response, temp_audio_path



# ✅ Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# 📄 AI-Powered Multi-Document Chatbot with Voice Output")
    
    file_dropdown = gr.Dropdown(choices=get_files_from_drive(), label="📂 Select Files", multiselect=True)
    refresh_button = gr.Button("🔄 Refresh Files")  # 🔄 Add Refresh Button
    process_button = gr.Button("🚀 Process Documents")
    
    user_input = gr.Textbox(label="🔎 Ask a Question")
    submit_button = gr.Button("💬 Get Answer")
    
    response_output = gr.Textbox(label="📝 Response")
    audio_output = gr.Audio(label="🔊 Audio Response")

    # 🔄 Function to Refresh File List
    def refresh_files():
        return gr.update(choices=get_files_from_drive())

    # ✅ Connect Refresh Button
    refresh_button.click(refresh_files, outputs=file_dropdown)

    # ✅ Connect Process Button
    process_button.click(process_documents, inputs=file_dropdown, outputs=response_output)

    # ✅ Connect Query Button
    submit_button.click(query_document, inputs=user_input, outputs=[response_output, audio_output])

demo.launch()