sreejith8100 commited on
Commit
7b58805
·
1 Parent(s): 657c17b
Files changed (3) hide show
  1. Dockerfile +1 -1
  2. client.py +36 -44
  3. main.py +69 -24
Dockerfile CHANGED
@@ -19,4 +19,4 @@ RUN pip install --no-cache-dir -r requirements.txt
19
 
20
  COPY --chown=user . .
21
 
22
- CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
 
19
 
20
  COPY --chown=user . .
21
 
22
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--client-max-size", "10485760"]
client.py CHANGED
@@ -1,61 +1,53 @@
1
- import os
2
  import base64
3
  import json
4
- import requests
5
- from PIL import Image
6
  import urllib3
7
 
8
- urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
9
-
10
- orig_path = r"D:\grcpsample\content\extracted\images_8184456bc26d4e7f9c5237c350fe20ba\page_4.png"
11
- resized_path = r"D:\grcpsample\content\extracted\images_8184456bc26d4e7f9c5237c350fe20ba\page_4_small.jpg"
12
-
13
- # 1. Load and downscale
14
- img = Image.open(orig_path)
15
- max_side = 800 # tweak to 600 or 512 if still too large
16
- scale = max_side / max(img.size)
17
- if scale < 1.0:
18
- new_size = (int(img.width * scale), int(img.height * scale))
19
- img = img.resize(new_size, Image.LANCZOS)
20
-
21
- # 2. Save as JPEG at 70% quality
22
- img.save(resized_path, format="JPEG", quality=70)
23
 
24
- # 3. Print new on-disk size
25
- new_size_kb = os.path.getsize(resized_path) / 1024
26
- print(f"Resized JPEG size: {new_size_kb:.2f} KB") # aim for ≤ 500 KB
27
 
28
- # 4. Base64-encode and print that size
29
- with open(resized_path, "rb") as f:
30
- img_bytes = f.read()
31
- b64 = base64.b64encode(img_bytes).decode("utf-8")
32
- b64_kb = len(b64.encode("utf-8")) / 1024
33
- print(f"Base64 size: {b64_kb:.2f} KB") # expect ~1.33× raw size
34
 
35
- # 5. Build payload and measure final JSON
36
  payload = {
37
  "inputs": {
38
- "image": b64,
39
  "question": "What is in the image?",
40
  "stream": True
41
  }
42
  }
43
- json_payload = json.dumps(payload)
44
- final_kb = len(json_payload.encode("utf-8")) / 1024
45
- print(f"Final JSON payload: {final_kb:.2f} KB") # want < ~700 KB
46
 
47
- # 6. POST to the Space
48
- url = "https://huggingface.co/spaces/sreejith8100/llm_model/predict"
49
- headers = {"Content-Type": "application/json"}
 
 
50
 
51
  try:
52
- with requests.post(url, data=json_payload, headers=headers, stream=True, verify=False) as resp:
53
- resp.raise_for_status()
54
- for line in resp.iter_lines(decode_unicode=True):
55
- if line.startswith("data: "):
56
- chunk = json.loads(line.replace("data: ", ""))
57
- if chunk.get("output"):
58
- print(chunk["output"], end="", flush=True)
59
- except requests.HTTPError as e:
60
- print(f"HTTP error: {e}, body:\n{resp.text}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  raise
 
1
+ import requests
2
  import base64
3
  import json
 
 
4
  import urllib3
5
 
6
+ # url = "https://llm-fastapi-sreejith8100.hf.space/predict"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ url = "https://sreejith8100-llm-fastapi.hf.space/predict"
 
 
9
 
10
+ # Read image bytes and encode as base64 string
11
+ with open(r"D:\grcpsample\content\extracted\images_21f3b49d112546a5bbf39d66a2f9c6ac\page_4.png", "rb") as f:
12
+ image_bytes = f.read()
13
+ image_base64 = base64.b64encode(image_bytes).decode("utf-8")
 
 
14
 
 
15
  payload = {
16
  "inputs": {
17
+ "image": image_base64,
18
  "question": "What is in the image?",
19
  "stream": True
20
  }
21
  }
 
 
 
22
 
23
+ urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
24
+
25
+ headers = {
26
+ "Content-Type": "application/json"
27
+ }
28
 
29
  try:
30
+ with requests.post(url, data=json.dumps(payload), headers=headers, stream=True, verify=False) as response:
31
+ response.raise_for_status() # Raise error for HTTP errors
32
+
33
+ for line in response.iter_lines():
34
+ if line:
35
+ decoded_line = line.decode("utf-8")
36
+ if decoded_line.startswith("data: "):
37
+ content = decoded_line.replace("data: ", "")
38
+ try:
39
+ parsed = json.loads(content)
40
+ except json.JSONDecodeError as e:
41
+ raise ValueError(f"Malformed JSON chunk: {content}") from e
42
+
43
+ output = parsed.get("output", "")
44
+ if output:
45
+ print(output, end="", flush=True)
46
+
47
+ except requests.HTTPError as http_err:
48
+ print(f"HTTP error occurred: {http_err}")
49
+ raise
50
+
51
+ except Exception as err:
52
+ print(f"Error occurred: {err}")
53
  raise
main.py CHANGED
@@ -1,50 +1,95 @@
1
- from fastapi import FastAPI
2
  from fastapi.responses import JSONResponse, StreamingResponse
3
- from pydantic import BaseModel
4
- import types
5
- import json
6
-
7
- from endpoint_handler import EndpointHandler # your handler file
8
 
 
9
  app = FastAPI()
10
 
 
11
  handler = None
12
 
13
  @app.on_event("startup")
14
  async def load_handler():
15
  global handler
16
- handler = EndpointHandler()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  class PredictInput(BaseModel):
19
- image: str # base64-encoded image string
20
  question: str
21
  stream: bool = False
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  class PredictRequest(BaseModel):
24
  inputs: PredictInput
25
 
26
- @app.get("/")
27
- async def root():
28
- return {"message": "FastAPI app is running on Hugging Face"}
29
-
30
  @app.post("/predict")
31
  async def predict_endpoint(payload: PredictRequest):
32
- print(f"[Request] Received question: {payload.inputs.question}")
33
-
34
- data = {
 
 
 
 
 
35
  "inputs": {
36
  "image": payload.inputs.image,
37
  "question": payload.inputs.question,
38
- "stream": payload.inputs.stream
39
  }
40
  }
41
-
42
- result = handler.predict(data)
43
-
 
 
 
 
 
 
 
44
  if isinstance(result, types.GeneratorType):
45
- def event_stream():
46
- for chunk in result:
47
- yield f"data: {json.dumps(chunk)}\n\n"
 
 
 
 
 
 
 
48
  return StreamingResponse(event_stream(), media_type="text/event-stream")
49
-
50
- return JSONResponse(content=result)
 
 
1
+ from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
2
  from fastapi.responses import JSONResponse, StreamingResponse
3
+ from fastapi.middleware.cors import CORSMiddleware
4
+ from pydantic import BaseModel, validator
5
+ import base64, types, json, logging, asyncio
6
+ from endpoint_handler import EndpointHandler
 
7
 
8
+ logger = logging.getLogger("uvicorn.error")
9
  app = FastAPI()
10
 
11
+
12
  handler = None
13
 
14
  @app.on_event("startup")
15
  async def load_handler():
16
  global handler
17
+ try:
18
+ handler = EndpointHandler()
19
+ logger.info("EndpointHandler initialized successfully.")
20
+ except Exception as e:
21
+ logger.error(f"Failed to initialize handler: {e}", exc_info=True)
22
+ handler = None # so /predict will return 503
23
+
24
+ @app.on_event("shutdown")
25
+ async def cleanup_handler():
26
+ if handler:
27
+ try:
28
+ handler.close()
29
+ logger.info("Handler cleaned up on shutdown.")
30
+ except Exception:
31
+ logger.error("Error during handler cleanup", exc_info=True)
32
 
33
  class PredictInput(BaseModel):
34
+ image: str
35
  question: str
36
  stream: bool = False
37
 
38
+ @validator("question")
39
+ def question_not_empty(cls, v):
40
+ if not v.strip():
41
+ raise ValueError("Question must not be empty")
42
+ return v
43
+
44
+ @validator("image")
45
+ def valid_base64(cls, v):
46
+ try:
47
+ base64.b64decode(v, validate=True)
48
+ except Exception:
49
+ raise ValueError("`image` must be valid base64")
50
+ return v
51
+
52
  class PredictRequest(BaseModel):
53
  inputs: PredictInput
54
 
 
 
 
 
55
  @app.post("/predict")
56
  async def predict_endpoint(payload: PredictRequest):
57
+ if handler is None:
58
+ return JSONResponse({"error": "Service unavailable"}, status_code=503)
59
+
60
+ # Log input
61
+ logger.info(f"Received question: {payload.inputs.question}")
62
+
63
+ # Prepare the data dict exactly how EndpointHandler expects
64
+ request_dict = {
65
  "inputs": {
66
  "image": payload.inputs.image,
67
  "question": payload.inputs.question,
68
+ "stream": payload.inputs.stream,
69
  }
70
  }
71
+
72
+ try:
73
+ result = await asyncio.to_thread(handler.predict, request_dict)
74
+ except ValueError as ve:
75
+ return JSONResponse({"error": str(ve)}, status_code=400)
76
+ except Exception as e:
77
+ logger.error("Unexpected error in handler.predict", exc_info=True)
78
+ return JSONResponse({"error": "Internal server error"}, status_code=500)
79
+
80
+ # If handler.predict returned a generator, wrap in SSE
81
  if isinstance(result, types.GeneratorType):
82
+ async def event_stream():
83
+ try:
84
+ for chunk in result:
85
+ yield f"data: {json.dumps(chunk)}\n\n"
86
+ except (asyncio.CancelledError, ConnectionResetError):
87
+ logger.info("Client disconnected from stream.")
88
+ except Exception:
89
+ logger.error("Error during streaming", exc_info=True)
90
+ yield f"data: {json.dumps({'error': 'Stream error'})}\n\n"
91
+
92
  return StreamingResponse(event_stream(), media_type="text/event-stream")
93
+
94
+ # Otherwise normal JSON
95
+ return JSONResponse(content=result, status_code=200)