import streamlit as st from PIL import Image import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForImageToText from colpali_engine.models import ColPali, ColPaliProcessor from huggingface_hub import login import os # Set device for computation device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Get Hugging Face token from environment variables hf_token = os.getenv('HF_TOKEN') # Log in to Hugging Face Hub (this will authenticate globally) login(token=hf_token) # Load the processor and image-to-text model directly try: processor_img_to_text = AutoProcessor.from_pretrained("google/paligemma-3b-mix-448") model_img_to_text = AutoModelForImageToText.from_pretrained("google/paligemma-3b-mix-448").to(device) except Exception as e: st.error(f"Error loading image-to-text model: {e}") st.stop() # Load ColPali model with Hugging Face token try: model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device) processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448") except Exception as e: st.error(f"Error loading ColPali model or processor: {e}") st.stop() # Load Qwen model try: model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device) processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") except Exception as e: st.error(f"Error loading Qwen model or processor: {e}") st.stop() # Streamlit UI st.title("OCR and Document Search Web Application") st.write("Upload an image containing text in both Hindi and English for OCR processing and keyword search.") # File uploader for the image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: try: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("") # Use the image-to-text model to extract text from the image inputs_img_to_text = processor_img_to_text(images=image, return_tensors="pt").to(device) with torch.no_grad(): generated_ids_img_to_text = model_img_to_text.generate(**inputs_img_to_text, max_new_tokens=128) output_text_img_to_text = processor_img_to_text.batch_decode(generated_ids_img_to_text, skip_special_tokens=True, clean_up_tokenization_spaces=True) st.write("Extracted Text from Image:") st.write(output_text_img_to_text) # Prepare input for Qwen model for image description conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}] text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True) inputs_qwen = processor_qwen(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to(device) # Generate response with Qwen model with torch.no_grad(): output_ids_qwen = model_qwen.generate(**inputs_qwen, max_new_tokens=128) generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)] output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True) st.write("Qwen Model Description:") st.write(output_text_qwen) # Keyword search in the extracted text keyword = st.text_input("Enter a keyword to search in the extracted text:") if keyword: if keyword.lower() in output_text_img_to_text[0].lower(): st.write(f"Keyword '{keyword}' found in the text.") else: st.write(f"Keyword '{keyword}' not found in the text.") except Exception as e: st.error(f"An error occurred: {e}") if __name__ == "__main__": st.write("Deploying the web application...")