Spaces:
Sleeping
Sleeping
Init
Browse files- .dockerignore +2 -0
- .gitignore +5 -0
- Dockerfile +56 -0
- README.md +28 -9
- app.py +310 -0
- evaluation_results.jsonl +0 -0
- evaluation_results_batch.jsonl +0 -0
- requirements.txt +6 -0
.dockerignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.ruff_cache/
|
2 |
+
.venv/
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea/
|
2 |
+
.venv/
|
3 |
+
.ruff_cache/
|
4 |
+
|
5 |
+
flagged/
|
Dockerfile
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.13.2-bookworm
|
2 |
+
|
3 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
4 |
+
|
5 |
+
RUN apt-get update && \
|
6 |
+
apt-get upgrade -y && \
|
7 |
+
apt-get install -y --no-install-recommends \
|
8 |
+
git \
|
9 |
+
git-lfs \
|
10 |
+
wget \
|
11 |
+
curl \
|
12 |
+
ca-certificates \
|
13 |
+
# python build dependencies \
|
14 |
+
build-essential \
|
15 |
+
libssl-dev \
|
16 |
+
zlib1g-dev \
|
17 |
+
libbz2-dev \
|
18 |
+
libreadline-dev \
|
19 |
+
libsqlite3-dev \
|
20 |
+
libncursesw5-dev \
|
21 |
+
xz-utils \
|
22 |
+
tk-dev \
|
23 |
+
libxml2-dev \
|
24 |
+
libxmlsec1-dev \
|
25 |
+
libffi-dev \
|
26 |
+
liblzma-dev \
|
27 |
+
# gradio dependencies \
|
28 |
+
ffmpeg \
|
29 |
+
&& apt-get clean \
|
30 |
+
&& rm -rf /var/lib/apt/lists/*
|
31 |
+
|
32 |
+
RUN python -m ensurepip --upgrade && python -m pip install --upgrade pip
|
33 |
+
|
34 |
+
RUN useradd -m -u 1001 hf-space
|
35 |
+
USER hf-space
|
36 |
+
|
37 |
+
ENV HOME=/home/hf-space \
|
38 |
+
PATH=/home/hf-space/.local/bin:${PATH} \
|
39 |
+
PYTHONPATH=/home/hf-space/app \
|
40 |
+
PYTHONUNBUFFERED=1 \
|
41 |
+
GRADIO_ALLOW_FLAGGING=never \
|
42 |
+
GRADIO_NUM_PORTS=1 \
|
43 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
44 |
+
GRADIO_THEME=huggingface \
|
45 |
+
SYSTEM=spaces \
|
46 |
+
HF_HOME=/home/hf-space/app/hf-home
|
47 |
+
|
48 |
+
COPY --chown=hf-space:hf-space . ${HOME}/app
|
49 |
+
|
50 |
+
WORKDIR ${HOME}/app
|
51 |
+
|
52 |
+
RUN mkdir ${HF_HOME} && chmod a+rwx ${HF_HOME}
|
53 |
+
|
54 |
+
RUN pip install --no-cache-dir -r /home/hf-space/app/requirements.txt
|
55 |
+
|
56 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,12 +1,31 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
title: Evaluate ASR outputs
|
4 |
+
sdk: docker
|
5 |
+
emoji: 👀
|
6 |
+
colorFrom: green
|
7 |
+
colorTo: gray
|
8 |
+
short_description: 'Calculate WER/CER values from JSONL files made by ASR models'
|
|
|
9 |
---
|
10 |
|
11 |
+
## Install
|
12 |
+
|
13 |
+
```shell
|
14 |
+
uv venv --python 3.13.2
|
15 |
+
|
16 |
+
source .venv/bin/activate
|
17 |
+
|
18 |
+
uv pip install -r requirements.txt
|
19 |
+
```
|
20 |
+
|
21 |
+
## Build image
|
22 |
+
|
23 |
+
```shell
|
24 |
+
docker build -t evaluate-asr-outputs .
|
25 |
+
```
|
26 |
+
|
27 |
+
## Run
|
28 |
+
|
29 |
+
```shell
|
30 |
+
docker run -it --rm -p 8888:7860 evaluate-asr-outputs
|
31 |
+
```
|
app.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import re
|
3 |
+
|
4 |
+
from importlib.metadata import version
|
5 |
+
|
6 |
+
import evaluate
|
7 |
+
import polars as pl
|
8 |
+
import gradio as gr
|
9 |
+
from natsort import natsorted
|
10 |
+
|
11 |
+
# Load evaluators
|
12 |
+
wer = evaluate.load("wer")
|
13 |
+
cer = evaluate.load("cer")
|
14 |
+
|
15 |
+
# Config
|
16 |
+
concurrency_limit = 5
|
17 |
+
|
18 |
+
title = "Evaluate ASR Outputs"
|
19 |
+
|
20 |
+
# https://www.tablesgenerator.com/markdown_tables
|
21 |
+
authors_table = """
|
22 |
+
## Authors
|
23 |
+
|
24 |
+
Follow them on social networks and **contact** if you need any help or have any questions:
|
25 |
+
|
26 |
+
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|
27 |
+
|-------------------------------------------------------------------------------------------------|
|
28 |
+
| https://t.me/smlkw in Telegram |
|
29 |
+
| https://x.com/yehor_smoliakov at X |
|
30 |
+
| https://github.com/egorsmkv at GitHub |
|
31 |
+
| https://huggingface.co/Yehor at Hugging Face |
|
32 |
+
| or use egorsmkv@gmail.com |
|
33 |
+
""".strip()
|
34 |
+
|
35 |
+
examples = [
|
36 |
+
["evaluation_results.jsonl", True, False, False],
|
37 |
+
["evaluation_results_batch.jsonl", True, False, True],
|
38 |
+
]
|
39 |
+
|
40 |
+
description_head = f"""
|
41 |
+
# {title}
|
42 |
+
|
43 |
+
## Overview
|
44 |
+
|
45 |
+
Upload a JSONL file generated by the ASR model.
|
46 |
+
""".strip()
|
47 |
+
|
48 |
+
description_foot = f"""
|
49 |
+
{authors_table}
|
50 |
+
""".strip()
|
51 |
+
|
52 |
+
metrics_value = """
|
53 |
+
Metrics will appear here.
|
54 |
+
""".strip()
|
55 |
+
|
56 |
+
tech_env = f"""
|
57 |
+
#### Environment
|
58 |
+
|
59 |
+
- Python: {sys.version}
|
60 |
+
""".strip()
|
61 |
+
|
62 |
+
tech_libraries = f"""
|
63 |
+
#### Libraries
|
64 |
+
|
65 |
+
- evaluate: {version("evaluate")}
|
66 |
+
- gradio: {version("gradio")}
|
67 |
+
- jiwer: {version("jiwer")}
|
68 |
+
- polars: {version("polars")}
|
69 |
+
""".strip()
|
70 |
+
|
71 |
+
|
72 |
+
def clean_value(x):
|
73 |
+
s = (
|
74 |
+
x.replace("’", "'")
|
75 |
+
.strip()
|
76 |
+
.lower()
|
77 |
+
.replace(":", " ")
|
78 |
+
.replace(",", " ")
|
79 |
+
.replace(".", " ")
|
80 |
+
.replace("?", " ")
|
81 |
+
.replace("!", " ")
|
82 |
+
.replace("–", " ")
|
83 |
+
.replace("«", " ")
|
84 |
+
.replace("»", " ")
|
85 |
+
.replace("—", " ")
|
86 |
+
.replace("…", " ")
|
87 |
+
.replace("/", " ")
|
88 |
+
.replace("\\", " ")
|
89 |
+
.replace("(", " ")
|
90 |
+
.replace(")", " ")
|
91 |
+
.replace("́", "")
|
92 |
+
.replace('"', " ")
|
93 |
+
)
|
94 |
+
|
95 |
+
s = re.sub(r" +", " ", s)
|
96 |
+
|
97 |
+
s = s.strip()
|
98 |
+
|
99 |
+
# print(s)
|
100 |
+
|
101 |
+
return s
|
102 |
+
|
103 |
+
|
104 |
+
def inference(file_name, _clear_punctuation_references, _clear_punctuation_predictions, _show_chars, _batch_mode):
|
105 |
+
if not file_name:
|
106 |
+
raise gr.Error("Please paste your JSON file.")
|
107 |
+
|
108 |
+
df = pl.read_ndjson(file_name)
|
109 |
+
total_rows = len(df)
|
110 |
+
df = df.drop_nulls()
|
111 |
+
filtered_rows = len(df)
|
112 |
+
|
113 |
+
if total_rows != filtered_rows:
|
114 |
+
gr.Info(f"Total rows in the file: {total_rows}, but after dropping rows with NULL values there are: {filtered_rows} rows. Seems like a corrupted file.")
|
115 |
+
|
116 |
+
required_columns = [
|
117 |
+
"filename",
|
118 |
+
"inference_start",
|
119 |
+
"inference_end",
|
120 |
+
"inference_total",
|
121 |
+
"duration",
|
122 |
+
"reference",
|
123 |
+
"prediction",
|
124 |
+
]
|
125 |
+
required_columns_batch = [
|
126 |
+
"inference_start",
|
127 |
+
"inference_end",
|
128 |
+
"inference_total",
|
129 |
+
"filenames",
|
130 |
+
"durations",
|
131 |
+
"references",
|
132 |
+
"predictions",
|
133 |
+
]
|
134 |
+
|
135 |
+
inference_seconds = df["inference_total"].sum()
|
136 |
+
|
137 |
+
if _batch_mode:
|
138 |
+
if not all(col in df.columns for col in required_columns_batch):
|
139 |
+
raise gr.Error(
|
140 |
+
f"Please provide a JSONL file with the following columns: {required_columns_batch}"
|
141 |
+
)
|
142 |
+
|
143 |
+
duration_seconds = 0
|
144 |
+
for durations in df["durations"]:
|
145 |
+
duration_seconds += durations.sum()
|
146 |
+
|
147 |
+
rtf = inference_seconds / duration_seconds
|
148 |
+
|
149 |
+
references_batch = df["references"]
|
150 |
+
predictions_batch = df["predictions"]
|
151 |
+
|
152 |
+
references = []
|
153 |
+
for reference in references_batch:
|
154 |
+
if _clear_punctuation_references:
|
155 |
+
reference = reference.map_elements(
|
156 |
+
clean_value, return_dtype=pl.String
|
157 |
+
)
|
158 |
+
references.extend(reference)
|
159 |
+
else:
|
160 |
+
references.extend(reference)
|
161 |
+
|
162 |
+
predictions = []
|
163 |
+
for prediction in predictions_batch:
|
164 |
+
if _clear_punctuation_predictions:
|
165 |
+
prediction = prediction.map_elements(
|
166 |
+
clean_value, return_dtype=pl.String
|
167 |
+
)
|
168 |
+
predictions.extend(prediction)
|
169 |
+
else:
|
170 |
+
predictions.extend(prediction)
|
171 |
+
else:
|
172 |
+
if not all(col in df.columns for col in required_columns):
|
173 |
+
raise gr.Error(
|
174 |
+
f"Please provide a JSONL file with the following columns: {required_columns}"
|
175 |
+
)
|
176 |
+
|
177 |
+
duration_seconds = df["duration"].sum()
|
178 |
+
|
179 |
+
rtf = inference_seconds / duration_seconds
|
180 |
+
|
181 |
+
if _clear_punctuation_references:
|
182 |
+
references = df["reference"].map_elements(
|
183 |
+
clean_value, return_dtype=pl.String
|
184 |
+
)
|
185 |
+
else:
|
186 |
+
references = df["reference"]
|
187 |
+
|
188 |
+
if _clear_punctuation_predictions:
|
189 |
+
predictions = df["prediction"].map_elements(
|
190 |
+
clean_value, return_dtype=pl.String
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
predictions = df["prediction"]
|
194 |
+
|
195 |
+
n_predictions = len(predictions)
|
196 |
+
n_references = len(references)
|
197 |
+
|
198 |
+
# Evaluate
|
199 |
+
wer_value = round(wer.compute(predictions=predictions, references=references), 4)
|
200 |
+
cer_value = round(cer.compute(predictions=predictions, references=references), 4)
|
201 |
+
|
202 |
+
inference_time = inference_seconds
|
203 |
+
audio_duration = duration_seconds
|
204 |
+
|
205 |
+
rtf = inference_time / audio_duration
|
206 |
+
|
207 |
+
results = []
|
208 |
+
|
209 |
+
results.append(
|
210 |
+
f"- Number of references / predictions: {n_references} / {n_predictions}"
|
211 |
+
)
|
212 |
+
results.append(f"")
|
213 |
+
results.append(f"- WER: {wer_value} metric, {round(wer_value * 100, 4)}%")
|
214 |
+
results.append(f"- CER: {cer_value} metric, {round(cer_value * 100, 4)}%")
|
215 |
+
results.append("")
|
216 |
+
results.append(f"- Accuracy on words: {round(100 - 100 * wer_value, 4)}%")
|
217 |
+
results.append(f"- Accuracy on chars: {round(100 - 100 * cer_value, 4)}%")
|
218 |
+
results.append("")
|
219 |
+
results.append(
|
220 |
+
f"- Inference time: {round(inference_time, 4)} seconds, {round(inference_time / 60, 4)} mins, {round(inference_time / 60 / 60, 4)} hours"
|
221 |
+
)
|
222 |
+
results.append(
|
223 |
+
f"- Audio duration: {round(audio_duration, 4)} seconds, {round(audio_duration / 60 / 60, 4)} hours"
|
224 |
+
)
|
225 |
+
results.append("")
|
226 |
+
results.append(f"- RTF: {round(rtf, 4)}")
|
227 |
+
|
228 |
+
if _show_chars:
|
229 |
+
all_chars = set()
|
230 |
+
for ref in references:
|
231 |
+
for c in ref:
|
232 |
+
all_chars.add(c)
|
233 |
+
|
234 |
+
sorted_chars = natsorted(list(all_chars))
|
235 |
+
|
236 |
+
results.append("")
|
237 |
+
results.append(f"Chars in references:")
|
238 |
+
results.append(f"{sorted_chars}")
|
239 |
+
|
240 |
+
all_chars = set()
|
241 |
+
for pred in predictions:
|
242 |
+
for c in pred:
|
243 |
+
all_chars.add(c)
|
244 |
+
|
245 |
+
sorted_chars = natsorted(list(all_chars))
|
246 |
+
|
247 |
+
results.append("")
|
248 |
+
results.append(f"Chars in predictions:")
|
249 |
+
results.append(f"{sorted_chars}")
|
250 |
+
|
251 |
+
return "\n".join(results)
|
252 |
+
|
253 |
+
|
254 |
+
demo = gr.Blocks(
|
255 |
+
title=title,
|
256 |
+
analytics_enabled=False,
|
257 |
+
theme=gr.themes.Base(),
|
258 |
+
)
|
259 |
+
|
260 |
+
with demo:
|
261 |
+
gr.Markdown(description_head)
|
262 |
+
|
263 |
+
gr.Markdown("## Usage")
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column():
|
267 |
+
jsonl_file = gr.File(label="A JSONL file")
|
268 |
+
|
269 |
+
clear_punctuation_references = gr.Checkbox(
|
270 |
+
label="Clear punctuation (in references), some chars and convert to lowercase",
|
271 |
+
)
|
272 |
+
clear_punctuation_predictions = gr.Checkbox(
|
273 |
+
label="Clear punctuation (in predictions), some chars and convert to lowercase",
|
274 |
+
)
|
275 |
+
show_chars = gr.Checkbox(
|
276 |
+
label="Show chars in references/predictions",
|
277 |
+
)
|
278 |
+
batch_mode = gr.Checkbox(
|
279 |
+
label="Use batch mode",
|
280 |
+
)
|
281 |
+
|
282 |
+
metrics = gr.Textbox(
|
283 |
+
label="Metrics",
|
284 |
+
placeholder=metrics_value,
|
285 |
+
show_copy_button=True,
|
286 |
+
)
|
287 |
+
|
288 |
+
gr.Button("Calculate").click(
|
289 |
+
inference,
|
290 |
+
concurrency_limit=concurrency_limit,
|
291 |
+
inputs=[jsonl_file, clear_punctuation_references, clear_punctuation_predictions, show_chars, batch_mode],
|
292 |
+
outputs=metrics,
|
293 |
+
)
|
294 |
+
|
295 |
+
with gr.Row():
|
296 |
+
gr.Examples(
|
297 |
+
label="Choose an example",
|
298 |
+
inputs=[jsonl_file, clear_punctuation_references, clear_punctuation_predictions, show_chars, batch_mode],
|
299 |
+
examples=examples,
|
300 |
+
)
|
301 |
+
|
302 |
+
gr.Markdown(description_foot)
|
303 |
+
|
304 |
+
gr.Markdown("### Gradio app uses:")
|
305 |
+
gr.Markdown(tech_env)
|
306 |
+
gr.Markdown(tech_libraries)
|
307 |
+
|
308 |
+
if __name__ == "__main__":
|
309 |
+
demo.queue()
|
310 |
+
demo.launch()
|
evaluation_results.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluation_results_batch.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.23.0
|
2 |
+
|
3 |
+
evaluate==0.4.3
|
4 |
+
jiwer==3.1.0
|
5 |
+
polars==1.26.0
|
6 |
+
natsort==8.4.0
|