Multi_agent / app.py
spandana30's picture
Update app.py
d5dae56 verified
import streamlit as st
import os
import time
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from typing import Dict, List, TypedDict
from langgraph.graph import StateGraph, END
HF_TOKEN = os.getenv("HF_TOKEN")
AGENT_MODEL_CONFIG = {
"product_manager": {
"base_id": "unsloth/mistral-7b-bnb-4bit",
"adapter_id": "spandana30/product-manager-mistral"
},
"project_manager": {
"base_id": "unsloth/gemma-3-1b-it",
"adapter_id": "spandana30/project-manager-gemma"
},
"designer": {
"base_id": "unsloth/gemma-3-1b-it",
"adapter_id": "spandana30/project-manager-gemma"
},
"software_engineer": {
"base_id": "codellama/CodeLLaMA-7b-hf",
"adapter_id": "spandana30/software-engineer-codellama"
},
"qa_engineer": {
"base_id": "codellama/CodeLLaMA-7b-hf",
"adapter_id": "spandana30/software-engineer-codellama"
}
}
@st.cache_resource
def load_agent_model(base_id, adapter_id):
base_model = AutoModelForCausalLM.from_pretrained(
base_id,
torch_dtype=torch.float16,
device_map="auto",
load_in_4bit=True,
token=HF_TOKEN
)
model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
return model.eval(), tokenizer
def call_model(prompt: str, model, tokenizer) -> str:
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=1024,
do_sample=False,
temperature=0.3
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
class AgentState(TypedDict):
messages: List[Dict[str, str]]
product_vision: str
project_plan: str
design_specs: str
html: str
feedback: str
iteration: int
done: bool
timings: Dict[str, float]
def agent(template: str, state: AgentState, agent_key: str, timing_label: str):
st.write(f'πŸ›  Running agent: {agent_key}')
start = time.time()
model, tokenizer = load_agent_model(**AGENT_MODEL_CONFIG[agent_key])
prompt = template.format(
user_request=state["messages"][0]["content"],
product_vision=state.get("product_vision", ""),
project_plan=state.get("project_plan", ""),
design_specs=state.get("design_specs", ""),
html=state.get("html", "")
)
st.write(f'πŸ“€ Prompt for {agent_key}:', prompt)
response = call_model(prompt, model, tokenizer)
st.write(f'πŸ“₯ Response from {agent_key}:', response[:500])
state["messages"].append({"role": agent_key, "content": response})
state["timings"][timing_label] = time.time() - start
gc.collect()
return response
PROMPTS = {
"product_manager": (
"You're a Product Manager. Interpret this user request:\n"
"{user_request}\n"
"Define the high-level product goals, features, and user stories."
),
"project_manager": (
"You're a Project Manager. Based on this feature list:\n"
"{product_vision}\n"
"Create a project plan with key milestones and task assignments."
),
"designer": (
"You're a UI designer. Create design specs for:\n"
"{project_plan}\n"
"Include:\n"
"1. Color palette (primary, secondary, accent)\n"
"2. Font choices\n"
"3. Layout structure\n"
"4. Component styles\n"
"Don't write code - just design guidance."
),
"software_engineer": (
"Create a complete HTML page with embedded CSS for:\n"
"{design_specs}\n"
"Requirements:\n"
"1. Full HTML document with <!DOCTYPE>\n"
"2. CSS inside <style> tags in head\n"
"3. Mobile-responsive\n"
"4. Semantic HTML\n"
"5. Ready-to-use (will work when saved as .html)\n"
"Output JUST the complete HTML file content:"
),
"qa_engineer": (
"Review this website:\n"
"{html}\n"
"Check for:\n"
"1. Visual quality\n"
"2. Responsiveness\n"
"3. Functionality\n"
"Reply \"APPROVED\" if perfect, or suggest improvements."
)
}
def generate_ui(user_prompt: str, max_iter: int):
state: AgentState = {
"messages": [{"role": "user", "content": user_prompt}],
"product_vision": "",
"project_plan": "",
"design_specs": "",
"html": "",
"feedback": "",
"iteration": 0,
"done": False,
"timings": {}
}
workflow = StateGraph(AgentState)
workflow.add_node("product_manager", lambda s: {
"messages": s["messages"] + [{
"role": "product_manager",
"content": (pv := agent(PROMPTS["product_manager"], s, "product_manager", "product_manager"))
}],
"product_vision": pv
})
workflow.add_node("project_manager", lambda s: {
"messages": s["messages"] + [{
"role": "project_manager",
"content": (pp := agent(PROMPTS["project_manager"], s, "project_manager", "project_manager"))
}],
"project_plan": pp
})
workflow.add_node("designer", lambda s: {
"messages": s["messages"] + [{
"role": "designer",
"content": (ds := agent(PROMPTS["designer"], s, "designer", "designer"))
}],
"design_specs": ds
})
workflow.add_node("software_engineer", lambda s: {
"html": (html := agent(PROMPTS["software_engineer"], s, "software_engineer", "software_engineer")),
"messages": s["messages"] + [{"role": "software_engineer", "content": html}]
})
def qa_fn(s):
feedback = agent(PROMPTS["qa_engineer"], s, "qa_engineer", "qa_engineer")
done = "APPROVED" in feedback or s["iteration"] >= max_iter
return {
"feedback": feedback,
"done": done,
"iteration": s["iteration"] + 1,
"messages": s["messages"] + [{"role": "qa_engineer", "content": feedback}]
}
workflow.add_node("qa_engineer", qa_fn)
workflow.add_edge("product_manager", "project_manager")
workflow.add_edge("project_manager", "designer")
workflow.add_edge("designer", "software_engineer")
workflow.add_edge("software_engineer", "qa_engineer")
workflow.add_conditional_edges("qa_engineer", lambda s: END if s["done"] else "software_engineer")
workflow.set_entry_point("product_manager")
app = workflow.compile()
final_state = app.invoke(state)
return final_state
def main():
st.set_page_config(page_title="Multi-Agent UI Generator", layout="wide")
st.title("🧠 Multi-Agent UI Generation System")
max_iter = st.sidebar.slider("Max QA Iterations", 1, 5, 2)
prompt = st.text_area("What UI do you want to build?", "A coffee shop landing page with a hero image, menu, and contact form.", height=150)
if st.button("πŸš€ Generate"):
with st.spinner("Agents working..."):
final = generate_ui(prompt, max_iter)
st.success("βœ… UI Generated")
st.subheader("πŸ” Final Output")
st.components.v1.html(final["html"], height=600, scrolling=True)
st.subheader("🧠 Agent Messages")
for msg in final["messages"]:
st.markdown(f"**{msg['role'].title()}**:\n```\n{msg['content']}\n```")
if __name__ == "__main__":
main()