souging commited on
Commit
0f4206f
·
verified ·
1 Parent(s): 75dbd8c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -88,7 +88,7 @@ def text_to_3d(
88
  slat_guidance_strength: float,
89
  slat_sampling_steps: int,
90
  req: gr.Request,
91
- ) -> Tuple[dict, str]:
92
  """
93
  Convert an text prompt to a 3D model.
94
 
@@ -109,7 +109,7 @@ def text_to_3d(
109
  outputs = pipeline.run(
110
  prompt,
111
  seed=seed,
112
- formats=["gaussian", "mesh"],
113
  sparse_structure_sampler_params={
114
  "steps": ss_sampling_steps,
115
  "cfg_strength": ss_guidance_strength,
@@ -119,13 +119,13 @@ def text_to_3d(
119
  "cfg_strength": slat_guidance_strength,
120
  },
121
  )
122
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
123
  ply_path = os.path.join(user_dir, 'point_cloud.ply')
124
  gaussian_data = outputs['gaussian'][0]
125
  with open(ply_path, "wb") as f:
126
  gaussian_data.save_ply(f)
 
127
  torch.cuda.empty_cache()
128
- return state, ply_path
129
 
130
 
131
  def extract_glb(
@@ -229,7 +229,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
229
  ).then(
230
  text_to_3d,
231
  inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
232
- outputs=[output_buf, video_output],
233
  ).then(
234
  lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
235
  outputs=[extract_glb_btn, extract_gs_btn],
@@ -267,7 +267,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
267
  # Launch the Gradio app
268
  if __name__ == "__main__":
269
  parser = argparse.ArgumentParser(description="Gradio app with command-line port argument")
270
- parser.add_argument("--port", type=int, default=10000, help="Port to run the Gradio app on")
271
  args = parser.parse_args()
272
  port = args.port
273
  pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
 
88
  slat_guidance_strength: float,
89
  slat_sampling_steps: int,
90
  req: gr.Request,
91
+ ) -> str:
92
  """
93
  Convert an text prompt to a 3D model.
94
 
 
109
  outputs = pipeline.run(
110
  prompt,
111
  seed=seed,
112
+ formats=["gaussian"],
113
  sparse_structure_sampler_params={
114
  "steps": ss_sampling_steps,
115
  "cfg_strength": ss_guidance_strength,
 
119
  "cfg_strength": slat_guidance_strength,
120
  },
121
  )
 
122
  ply_path = os.path.join(user_dir, 'point_cloud.ply')
123
  gaussian_data = outputs['gaussian'][0]
124
  with open(ply_path, "wb") as f:
125
  gaussian_data.save_ply(f)
126
+ del outputs, gaussian_data
127
  torch.cuda.empty_cache()
128
+ return ply_path
129
 
130
 
131
  def extract_glb(
 
229
  ).then(
230
  text_to_3d,
231
  inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
232
+ outputs=video_output,
233
  ).then(
234
  lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
235
  outputs=[extract_glb_btn, extract_gs_btn],
 
267
  # Launch the Gradio app
268
  if __name__ == "__main__":
269
  parser = argparse.ArgumentParser(description="Gradio app with command-line port argument")
270
+ parser.add_argument("--port", type=int, default=8000, help="Port to run the Gradio app on")
271
  args = parser.parse_args()
272
  port = args.port
273
  pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")