daqc commited on
Commit
f68f560
verified
1 Parent(s): 4787997

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +185 -40
app.py CHANGED
@@ -1,64 +1,209 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
 
 
 
 
 
 
 
 
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
 
 
 
52
  gr.Slider(
 
 
 
 
 
 
 
 
53
  minimum=0.1,
54
  maximum=1.0,
 
55
  value=0.95,
 
 
 
 
 
 
 
 
 
 
 
 
56
  step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
3
+ import torch
4
+ import torch._dynamo
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ from threading import Thread
7
+ import spaces
8
 
9
+ # Desactivar TorchDynamo para evitar errores de compilaci贸n
10
+ torch._dynamo.config.suppress_errors = True
11
+ torch._dynamo.disable()
 
12
 
13
+ # Configuraci贸n
14
+ MODEL_ID = "somosnlp-hackathon-2025/iberotales-gemma-3-1b-it-es"
15
+ MAX_MAX_NEW_TOKENS = 4096
16
+ DEFAULT_MAX_NEW_TOKENS = 2048
17
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048"))
18
 
19
+ # System prompt personalizado
20
+ DEFAULT_SYSTEM_MESSAGE = """Resuelve el siguiente problema.
21
+ Primero, piensa en voz alta qu茅 debes hacer, paso por paso y de forma resumida, entre <think> y </think>.
22
+ Luego, da la respuesta final entre <SOLUTION> y </SOLUTION>.
23
+ No escribas nada fuera de ese formato."""
24
+
25
+ # Variables globales
26
+ model = None
27
+ tokenizer = None
28
+
29
+ def load_model():
30
+ """Cargar modelo y tokenizador"""
31
+ global model, tokenizer
32
+
33
+ if torch.cuda.is_available():
34
+ print(f"Cargando modelo: {MODEL_ID}")
35
+ try:
36
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
37
+ model = AutoModelForCausalLM.from_pretrained(
38
+ MODEL_ID,
39
+ torch_dtype=torch.float32,
40
+ device_map="auto",
41
+ trust_remote_code=True,
42
+ )
43
+
44
+ if tokenizer.pad_token is None:
45
+ tokenizer.pad_token = tokenizer.eos_token
46
+
47
+ print("隆Modelo cargado exitosamente!")
48
+ return True
49
+ except Exception as e:
50
+ print(f"Error al cargar el modelo: {e}")
51
+ return False
52
+ else:
53
+ print("CUDA no disponible")
54
+ return False
55
+
56
+ # Cargar modelo al iniciar
57
+ model_loaded = load_model()
58
+
59
+ @spaces.GPU
60
+ def generate(
61
+ message: str,
62
+ history: list,
63
+ system_message: str,
64
+ max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
65
+ temperature: float = 0.7,
66
+ top_p: float = 0.95,
67
+ top_k: int = 50,
68
+ repetition_penalty: float = 1.2,
69
  ):
70
+ """Generar historia con streaming"""
71
+ global model, tokenizer
72
+
73
+ if model is None or tokenizer is None:
74
+ yield "Error: Modelo no disponible. Por favor, reinicia la aplicaci贸n."
75
+ return
76
+
77
+ conversation = []
78
+
79
+ if system_message:
80
+ conversation.append({"role": "system", "content": system_message})
81
+
82
+ for msg in history:
83
+ if isinstance(msg, dict) and "role" in msg and "content" in msg:
84
+ conversation.append(msg)
85
+
86
+ conversation.append({"role": "user", "content": message})
87
+
88
+ try:
89
+ input_ids = tokenizer.apply_chat_template(
90
+ conversation,
91
+ return_tensors="pt",
92
+ add_generation_prompt=True,
93
+ )
94
+
95
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
96
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
97
+ gr.Warning(f"Conversaci贸n recortada a {MAX_INPUT_TOKEN_LENGTH} tokens.")
98
 
99
+ input_ids = input_ids.to(model.device)
100
+ attention_mask = torch.ones_like(input_ids, device=model.device)
 
 
 
101
 
102
+ streamer = TextIteratorStreamer(
103
+ tokenizer,
104
+ timeout=30.0,
105
+ skip_prompt=True,
106
+ skip_special_tokens=True
107
+ )
108
 
109
+ generate_kwargs = {
110
+ "input_ids": input_ids,
111
+ "attention_mask": attention_mask,
112
+ "streamer": streamer,
113
+ "max_new_tokens": max_new_tokens,
114
+ "do_sample": True,
115
+ "top_p": top_p,
116
+ "top_k": top_k,
117
+ "temperature": temperature,
118
+ "repetition_penalty": repetition_penalty,
119
+ "pad_token_id": tokenizer.eos_token_id,
120
+ "eos_token_id": tokenizer.eos_token_id,
121
+ }
122
 
123
+ generation_thread = Thread(target=model.generate, kwargs=generate_kwargs)
124
+ generation_thread.start()
 
 
 
 
 
 
125
 
126
+ outputs = []
127
+ try:
128
+ for new_text in streamer:
129
+ outputs.append(new_text)
130
+ yield "".join(outputs)
131
+ except Exception as e:
132
+ yield f"Error durante la generaci贸n: {str(e)}"
133
+ finally:
134
+ generation_thread.join(timeout=1)
135
 
136
+ except Exception as e:
137
+ yield f"Error: {str(e)}"
138
 
139
+ # Crear interfaz de chat
 
 
140
  demo = gr.ChatInterface(
141
+ fn=generate,
142
+ title="Iberotales: Mitos y Leyendas Iberoamericanas",
143
+ description="Genera historias y personajes basados en el patrimonio cultural de Iberoam茅rica usando GRPO.",
144
+ chatbot=gr.Chatbot(
145
+ height=600,
146
+ show_copy_button=True,
147
+ ),
148
+ textbox=gr.Textbox(
149
+ placeholder="Escribe una historia o personaje que quieras generar...",
150
+ scale=7
151
+ ),
152
  additional_inputs=[
153
+ gr.Textbox(
154
+ value=DEFAULT_SYSTEM_MESSAGE,
155
+ label="Mensaje del sistema (formato estructurado requerido)"
156
+ ),
157
+ gr.Slider(
158
+ label="M谩ximo de tokens",
159
+ minimum=100,
160
+ maximum=MAX_MAX_NEW_TOKENS,
161
+ step=50,
162
+ value=DEFAULT_MAX_NEW_TOKENS,
163
+ ),
164
  gr.Slider(
165
+ label="Temperatura",
166
+ minimum=0.1,
167
+ maximum=2.0,
168
+ step=0.1,
169
+ value=0.7,
170
+ ),
171
+ gr.Slider(
172
+ label="Top-p",
173
  minimum=0.1,
174
  maximum=1.0,
175
+ step=0.05,
176
  value=0.95,
177
+ ),
178
+ gr.Slider(
179
+ label="Top-k",
180
+ minimum=1,
181
+ maximum=100,
182
+ step=1,
183
+ value=50,
184
+ ),
185
+ gr.Slider(
186
+ label="Penalizaci贸n por repetici贸n",
187
+ minimum=1.0,
188
+ maximum=2.0,
189
  step=0.05,
190
+ value=1.2,
191
  ),
192
  ],
193
+ examples=[
194
+ ["Crea una historia corta sobre el Pombero, un personaje de la mitolog铆a guaran铆."],
195
+ ["Genera un personaje basado en la leyenda del Cadejo."],
196
+ ["Inventa una narrativa en torno al Nahual en un entorno contempor谩neo."],
197
+ ],
198
+ cache_examples=False,
199
  )
200
 
 
201
  if __name__ == "__main__":
202
+ if model_loaded:
203
+ print("Lanzando aplicaci贸n Gradio...")
204
+ demo.launch(
205
+ share=False,
206
+ show_error=True
207
+ )
208
+ else:
209
+ print("Error al cargar el modelo. No se puede iniciar la aplicaci贸n.")