import os import cv2 import shutil from PIL import Image import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F from flask import Flask, request, jsonify, render_template, send_from_directory import warnings warnings.filterwarnings("ignore") app = Flask(__name__) # 一時ファイル保存用ディレクトリ UPLOAD_FOLDER = 'uploads' RESULT_FOLDER = 'results' EXAMPLES_FOLDER = 'examples' os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(RESULT_FOLDER, exist_ok=True) os.makedirs(EXAMPLES_FOLDER, exist_ok=True) # モデル関連のインポートと初期化 def initialize_model(): # Clean up previous installations if os.path.exists("DIS"): shutil.rmtree("DIS") if os.path.exists("saved_models"): shutil.rmtree("saved_models") # Clone repository and setup model os.system("git clone https://github.com/xuebinqin/DIS") os.system("mv DIS/IS-Net/* .") # Import after setup from data_loader_cache import normalize, im_reader, im_preprocess from models import ISNetDIS device = 'cuda' if torch.cuda.is_available() else 'cpu' # Setup model directories if not os.path.exists("saved_models"): os.mkdir("saved_models") os.system("mv isnet.pth saved_models/") # Set Parameters hypar = { "model_path": "./saved_models", "restore_model": "isnet.pth", "interm_sup": False, "model_digit": "full", "seed": 0, "cache_size": [1024, 1024], "input_size": [1024, 1024], "crop_size": [1024, 1024], "model": ISNetDIS() } # Build Model net = build_model(hypar, device) return net, hypar, device class GOSNormalize(object): def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self, image): image = normalize(image, self.mean, self.std) return image transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) def load_image(im_path, hypar): im = im_reader(im_path) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im, 255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) def build_model(hypar, device): net = hypar["model"] if hypar["model_digit"] == "half": net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if hypar["restore_model"] != "": net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): net.eval() if hypar["model_digit"] == "full": inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) ds_val = net(inputs_val_v)[0] pred_val = ds_val[0][0,:,:,:] pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val-mi)/(ma-mi) if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) @app.route('/') def index(): return render_template('index.html') @app.route('/examples/') def serve_example(filename): # サンプル画像がなければダウンロード example_path = os.path.join(EXAMPLES_FOLDER, filename) if not os.path.exists(example_path): if filename == 'robot.png': os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/robot.png -O {example_path}") elif filename == 'ship.png': os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/ship.png -O {example_path}") return send_from_directory(EXAMPLES_FOLDER, filename) @app.route('/api/process', methods=['POST']) def process_image(): if 'image' not in request.files: return jsonify({"error": "No image provided"}), 400 file = request.files['image'] if file.filename == '': return jsonify({"error": "No selected file"}), 400 # 毎回モデルを初期化 net, hypar, device = initialize_model() # ファイルを保存 upload_path = os.path.join(UPLOAD_FOLDER, file.filename) file.save(upload_path) try: # 画像処理 image_tensor, orig_size = load_image(upload_path, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) # 結果を保存 original_filename = os.path.splitext(file.filename)[0] result_rgba_path = os.path.join(RESULT_FOLDER, f"{original_filename}_rgba.png") result_mask_path = os.path.join(RESULT_FOLDER, f"{original_filename}_mask.png") pil_mask = Image.fromarray(mask).convert('L') im_rgb = Image.open(upload_path).convert("RGB") im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) im_rgba.save(result_rgba_path) pil_mask.save(result_mask_path) # 結果のURLを返す return jsonify({ "original": f"/{UPLOAD_FOLDER}/{file.filename}", "rgba": f"/{RESULT_FOLDER}/{original_filename}_rgba.png", "mask": f"/{RESULT_FOLDER}/{original_filename}_mask.png", "filename": file.filename }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route(f'/{UPLOAD_FOLDER}/') def serve_upload(filename): return send_from_directory(UPLOAD_FOLDER, filename) @app.route(f'/{RESULT_FOLDER}/') def serve_result(filename): return send_from_directory(RESULT_FOLDER, filename) if __name__ == '__main__': app.run(host='0.0.0.0', port=7860, debug=True)