from flask import Flask, request, jsonify, render_template import cv2 import os from PIL import Image import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F import uuid import gdown import matplotlib.pyplot as plt import warnings app = Flask(__name__) # モデル設定と初期化コード device = 'cuda' if torch.cuda.is_available() else 'cpu' class GOSNormalize(object): def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self,image): image = normalize(image,self.mean,self.std) return image transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) def load_image(im_path, hypar): im = im_reader(im_path) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im,255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) def build_model(hypar,device): net = hypar["model"] if(hypar["model_digit"]=="half"): net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if(hypar["restore_model"]!=""): net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): net.eval() if(hypar["model_digit"]=="full"): inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) ds_val = net(inputs_val_v)[0] pred_val = ds_val[0][0,:,:,:] pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val-mi)/(ma-mi) if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # モデル初期化 hypar = { "model_path": "./saved_models", "restore_model": "isnet.pth", "interm_sup": False, "model_digit": "full", "seed": 0, "cache_size": [1024, 1024], "input_size": [1024, 1024], "crop_size": [1024, 1024], "model": ISNetDIS() } net = build_model(hypar, device) # 結果を保存するディレクトリを作成 os.makedirs('static/results', exist_ok=True) @app.route('/') def index(): return render_template('index.html') @app.route('/api/remove_bg', methods=['POST']) def remove_bg(): if 'image' not in request.files: return jsonify({'error': 'No image provided'}), 400 file = request.files['image'] if file.filename == '': return jsonify({'error': 'No image selected'}), 400 # 一時ファイルとして保存 temp_path = f"static/temp_{uuid.uuid4().hex}.png" file.save(temp_path) try: # 画像処理 image_tensor, orig_size = load_image(temp_path, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) pil_mask = Image.fromarray(mask).convert('L') im_rgb = Image.open(temp_path).convert("RGB") # 結果を保存 result_id = uuid.uuid4().hex rgba_path = f"static/results/{result_id}_rgba.png" mask_path = f"static/results/{result_id}_mask.png" im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) im_rgba.save(rgba_path) pil_mask.save(mask_path) # 一時ファイルを削除 os.remove(temp_path) return jsonify({ 'rgba_url': f"/{rgba_path}", 'mask_url': f"/{mask_path}" }) except Exception as e: # エラーが発生したら一時ファイルを削除 if os.path.exists(temp_path): os.remove(temp_path) return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(debug=True)