Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,65 @@
|
|
1 |
-
import cv2
|
2 |
-
import gradio as gr
|
3 |
import os
|
|
|
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from torch.autograd import Variable
|
8 |
from torchvision import transforms
|
9 |
import torch.nn.functional as F
|
10 |
-
import
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
import warnings
|
13 |
warnings.filterwarnings("ignore")
|
14 |
-
import flask
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
from data_loader_cache import normalize, im_reader, im_preprocess
|
21 |
-
from models import *
|
22 |
|
23 |
-
#
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
class GOSNormalize(object):
|
27 |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
@@ -43,13 +81,16 @@ def load_image(im_path, hypar):
|
|
43 |
|
44 |
def build_model(hypar, device):
|
45 |
net = hypar["model"]
|
46 |
-
|
|
|
47 |
net.half()
|
48 |
for layer in net.modules():
|
49 |
if isinstance(layer, nn.BatchNorm2d):
|
50 |
layer.float()
|
|
|
51 |
net.to(device)
|
52 |
-
|
|
|
53 |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
54 |
net.to(device)
|
55 |
net.eval()
|
@@ -57,11 +98,12 @@ def build_model(hypar, device):
|
|
57 |
|
58 |
def predict(net, inputs_val, shapes_val, hypar, device):
|
59 |
net.eval()
|
60 |
-
|
|
|
61 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
62 |
else:
|
63 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
64 |
-
|
65 |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
66 |
ds_val = net(inputs_val_v)[0]
|
67 |
pred_val = ds_val[0][0,:,:,:]
|
@@ -75,70 +117,73 @@ def predict(net, inputs_val, shapes_val, hypar, device):
|
|
75 |
if device == 'cuda': torch.cuda.empty_cache()
|
76 |
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
app = Flask(__name__)
|
95 |
-
app.config['UPLOAD_FOLDER'] = 'uploads'
|
96 |
-
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
97 |
|
98 |
-
@app.route('/api/
|
99 |
-
def
|
100 |
-
if '
|
101 |
-
return jsonify({"error": "No
|
102 |
|
103 |
-
file = request.files['
|
104 |
if file.filename == '':
|
105 |
return jsonify({"error": "No selected file"}), 400
|
106 |
|
|
|
|
|
|
|
107 |
# ファイルを保存
|
108 |
-
|
109 |
-
|
110 |
-
file.save(filepath)
|
111 |
|
112 |
try:
|
113 |
# 画像処理
|
114 |
-
image_tensor, orig_size = load_image(
|
115 |
mask = predict(net, image_tensor, orig_size, hypar, device)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
pil_mask = Image.fromarray(mask).convert('L')
|
118 |
-
im_rgb = Image.open(
|
119 |
im_rgba = im_rgb.copy()
|
120 |
im_rgba.putalpha(pil_mask)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
im_rgba.save(output_buffer, format="PNG")
|
125 |
-
output_buffer.seek(0)
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
download_name='output.png'
|
135 |
-
)
|
136 |
except Exception as e:
|
137 |
return jsonify({"error": str(e)}), 500
|
138 |
|
139 |
-
@app.route('/
|
140 |
-
def
|
141 |
-
return
|
|
|
|
|
|
|
|
|
142 |
|
143 |
if __name__ == '__main__':
|
144 |
app.run(host='0.0.0.0', port=5000, debug=True)
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import cv2
|
3 |
+
import shutil
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from torch.autograd import Variable
|
8 |
from torchvision import transforms
|
9 |
import torch.nn.functional as F
|
10 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
|
|
11 |
import warnings
|
12 |
warnings.filterwarnings("ignore")
|
|
|
13 |
|
14 |
+
app = Flask(__name__)
|
15 |
+
|
16 |
+
# 一時ファイル保存用ディレクトリ
|
17 |
+
UPLOAD_FOLDER = 'uploads'
|
18 |
+
RESULT_FOLDER = 'results'
|
19 |
+
EXAMPLES_FOLDER = 'examples'
|
20 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
21 |
+
os.makedirs(RESULT_FOLDER, exist_ok=True)
|
22 |
+
os.makedirs(EXAMPLES_FOLDER, exist_ok=True)
|
23 |
+
|
24 |
+
# モデル関連のインポートと初期化
|
25 |
+
def initialize_model():
|
26 |
+
# Clean up previous installations
|
27 |
+
if os.path.exists("DIS"):
|
28 |
+
shutil.rmtree("DIS")
|
29 |
+
if os.path.exists("saved_models"):
|
30 |
+
shutil.rmtree("saved_models")
|
31 |
+
|
32 |
+
# Clone repository and setup model
|
33 |
+
os.system("git clone https://github.com/xuebinqin/DIS")
|
34 |
+
os.system("mv DIS/IS-Net/* .")
|
35 |
+
|
36 |
+
# Import after setup
|
37 |
+
from data_loader_cache import normalize, im_reader, im_preprocess
|
38 |
+
from models import ISNetDIS
|
39 |
|
40 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
41 |
|
42 |
+
# Setup model directories
|
43 |
+
if not os.path.exists("saved_models"):
|
44 |
+
os.mkdir("saved_models")
|
45 |
+
os.system("mv isnet.pth saved_models/")
|
46 |
+
|
47 |
+
# Set Parameters
|
48 |
+
hypar = {
|
49 |
+
"model_path": "./saved_models",
|
50 |
+
"restore_model": "isnet.pth",
|
51 |
+
"interm_sup": False,
|
52 |
+
"model_digit": "full",
|
53 |
+
"seed": 0,
|
54 |
+
"cache_size": [1024, 1024],
|
55 |
+
"input_size": [1024, 1024],
|
56 |
+
"crop_size": [1024, 1024],
|
57 |
+
"model": ISNetDIS()
|
58 |
+
}
|
59 |
+
|
60 |
+
# Build Model
|
61 |
+
net = build_model(hypar, device)
|
62 |
+
return net, hypar, device
|
63 |
|
64 |
class GOSNormalize(object):
|
65 |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
|
|
81 |
|
82 |
def build_model(hypar, device):
|
83 |
net = hypar["model"]
|
84 |
+
|
85 |
+
if hypar["model_digit"] == "half":
|
86 |
net.half()
|
87 |
for layer in net.modules():
|
88 |
if isinstance(layer, nn.BatchNorm2d):
|
89 |
layer.float()
|
90 |
+
|
91 |
net.to(device)
|
92 |
+
|
93 |
+
if hypar["restore_model"] != "":
|
94 |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
95 |
net.to(device)
|
96 |
net.eval()
|
|
|
98 |
|
99 |
def predict(net, inputs_val, shapes_val, hypar, device):
|
100 |
net.eval()
|
101 |
+
|
102 |
+
if hypar["model_digit"] == "full":
|
103 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
104 |
else:
|
105 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
106 |
+
|
107 |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
108 |
ds_val = net(inputs_val_v)[0]
|
109 |
pred_val = ds_val[0][0,:,:,:]
|
|
|
117 |
if device == 'cuda': torch.cuda.empty_cache()
|
118 |
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
|
119 |
|
120 |
+
@app.route('/')
|
121 |
+
def index():
|
122 |
+
return render_template('index.html')
|
123 |
+
|
124 |
+
@app.route('/examples/<filename>')
|
125 |
+
def serve_example(filename):
|
126 |
+
# サンプル画像がなければダウンロード
|
127 |
+
example_path = os.path.join(EXAMPLES_FOLDER, filename)
|
128 |
+
if not os.path.exists(example_path):
|
129 |
+
if filename == 'robot.png':
|
130 |
+
os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/robot.png -O {example_path}")
|
131 |
+
elif filename == 'ship.png':
|
132 |
+
os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/ship.png -O {example_path}")
|
133 |
+
|
134 |
+
return send_from_directory(EXAMPLES_FOLDER, filename)
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
@app.route('/api/process', methods=['POST'])
|
137 |
+
def process_image():
|
138 |
+
if 'image' not in request.files:
|
139 |
+
return jsonify({"error": "No image provided"}), 400
|
140 |
|
141 |
+
file = request.files['image']
|
142 |
if file.filename == '':
|
143 |
return jsonify({"error": "No selected file"}), 400
|
144 |
|
145 |
+
# 毎回モデルを初期化
|
146 |
+
net, hypar, device = initialize_model()
|
147 |
+
|
148 |
# ファイルを保存
|
149 |
+
upload_path = os.path.join(UPLOAD_FOLDER, file.filename)
|
150 |
+
file.save(upload_path)
|
|
|
151 |
|
152 |
try:
|
153 |
# 画像処理
|
154 |
+
image_tensor, orig_size = load_image(upload_path, hypar)
|
155 |
mask = predict(net, image_tensor, orig_size, hypar, device)
|
156 |
|
157 |
+
# 結果を保存
|
158 |
+
original_filename = os.path.splitext(file.filename)[0]
|
159 |
+
result_rgba_path = os.path.join(RESULT_FOLDER, f"{original_filename}_rgba.png")
|
160 |
+
result_mask_path = os.path.join(RESULT_FOLDER, f"{original_filename}_mask.png")
|
161 |
+
|
162 |
pil_mask = Image.fromarray(mask).convert('L')
|
163 |
+
im_rgb = Image.open(upload_path).convert("RGB")
|
164 |
im_rgba = im_rgb.copy()
|
165 |
im_rgba.putalpha(pil_mask)
|
166 |
|
167 |
+
im_rgba.save(result_rgba_path)
|
168 |
+
pil_mask.save(result_mask_path)
|
|
|
|
|
169 |
|
170 |
+
# 結果のURLを返す
|
171 |
+
return jsonify({
|
172 |
+
"original": f"/{UPLOAD_FOLDER}/{file.filename}",
|
173 |
+
"rgba": f"/{RESULT_FOLDER}/{original_filename}_rgba.png",
|
174 |
+
"mask": f"/{RESULT_FOLDER}/{original_filename}_mask.png",
|
175 |
+
"filename": file.filename
|
176 |
+
})
|
|
|
|
|
177 |
except Exception as e:
|
178 |
return jsonify({"error": str(e)}), 500
|
179 |
|
180 |
+
@app.route(f'/{UPLOAD_FOLDER}/<filename>')
|
181 |
+
def serve_upload(filename):
|
182 |
+
return send_from_directory(UPLOAD_FOLDER, filename)
|
183 |
+
|
184 |
+
@app.route(f'/{RESULT_FOLDER}/<filename>')
|
185 |
+
def serve_result(filename):
|
186 |
+
return send_from_directory(RESULT_FOLDER, filename)
|
187 |
|
188 |
if __name__ == '__main__':
|
189 |
app.run(host='0.0.0.0', port=5000, debug=True)
|