soiz1's picture
Update app.py
1b2575b verified
raw
history blame
4.36 kB
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, send_file
import io
from werkzeug.utils import secure_filename
import warnings
warnings.filterwarnings("ignore")
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# モデルと設定の初期化
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
# パラメータ設定
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
# モデルをビルド
net = build_model(hypar, device)
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
@app.route('/api/remove-background', methods=['POST'])
def remove_background():
if 'file' not in request.files:
return jsonify({"error": "No file provided"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
# ファイルを保存
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
try:
# 画像処理
image_tensor, orig_size = load_image(filepath, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(filepath).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
# 結果をバイトデータとして返す
output_buffer = io.BytesIO()
im_rgba.save(output_buffer, format="PNG")
output_buffer.seek(0)
# 一時ファイルを削除
os.remove(filepath)
return send_file(
output_buffer,
mimetype='image/png',
as_attachment=True,
download_name='output.png'
)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/api/health', methods=['GET'])
def health_check():
return jsonify({"status": "healthy"}), 200
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)