Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,66 @@ model, transform = torch.hub.load("fkryan/gazelle", "gazelle_dinov2_vitl14_inout
|
|
17 |
model.eval()
|
18 |
model.to(device)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def main(image_input, progress=gr.Progress(track_tqdm=True)):
|
21 |
# load image
|
22 |
image = Image.open(image_input)
|
@@ -47,74 +107,12 @@ def main(image_input, progress=gr.Progress(track_tqdm=True)):
|
|
47 |
print(img1_person1_inout.item())
|
48 |
|
49 |
# visualize predicted gaze heatmap for each person and gaze in/out of frame score
|
50 |
-
|
51 |
-
def visualize_heatmap(pil_image, heatmap, bbox=None, inout_score=None):
|
52 |
-
if isinstance(heatmap, torch.Tensor):
|
53 |
-
heatmap = heatmap.detach().cpu().numpy()
|
54 |
-
heatmap = Image.fromarray((heatmap * 255).astype(np.uint8)).resize(pil_image.size, Image.Resampling.BILINEAR)
|
55 |
-
heatmap = plt.cm.jet(np.array(heatmap) / 255.)
|
56 |
-
heatmap = (heatmap[:, :, :3] * 255).astype(np.uint8)
|
57 |
-
heatmap = Image.fromarray(heatmap).convert("RGBA")
|
58 |
-
heatmap.putalpha(90)
|
59 |
-
overlay_image = Image.alpha_composite(pil_image.convert("RGBA"), heatmap)
|
60 |
-
|
61 |
-
if bbox is not None:
|
62 |
-
width, height = pil_image.size
|
63 |
-
xmin, ymin, xmax, ymax = bbox
|
64 |
-
draw = ImageDraw.Draw(overlay_image)
|
65 |
-
draw.rectangle([xmin * width, ymin * height, xmax * width, ymax * height], outline="lime", width=int(min(width, height) * 0.01))
|
66 |
-
|
67 |
-
if inout_score is not None:
|
68 |
-
text = f"in-frame: {inout_score:.2f}"
|
69 |
-
text_width = draw.textlength(text)
|
70 |
-
text_height = int(height * 0.01)
|
71 |
-
text_x = xmin * width
|
72 |
-
text_y = ymax * height + text_height
|
73 |
-
draw.text((text_x, text_y), text, fill="lime", font=ImageFont.load_default(size=int(min(width, height) * 0.05)))
|
74 |
-
return overlay_image
|
75 |
-
|
76 |
heatmap_results = []
|
77 |
for i in range(len(bboxes)):
|
78 |
-
overlay_img = visualize_heatmap(image, output['heatmap'][0][i], norm_bboxes[0][i], inout_score=output['inout'][0][i] if output['inout'] is not None else None)
|
79 |
heatmap_results.append(overlay_img)
|
80 |
|
81 |
# combined visualization with maximal gaze points for each person
|
82 |
-
|
83 |
-
def visualize_all(pil_image, heatmaps, bboxes, inout_scores, inout_thresh=0.5):
|
84 |
-
colors = ['lime', 'tomato', 'cyan', 'fuchsia', 'yellow']
|
85 |
-
overlay_image = pil_image.convert("RGBA")
|
86 |
-
draw = ImageDraw.Draw(overlay_image)
|
87 |
-
width, height = pil_image.size
|
88 |
-
|
89 |
-
for i in range(len(bboxes)):
|
90 |
-
bbox = bboxes[i]
|
91 |
-
xmin, ymin, xmax, ymax = bbox
|
92 |
-
color = colors[i % len(colors)]
|
93 |
-
draw.rectangle([xmin * width, ymin * height, xmax * width, ymax * height], outline=color, width=int(min(width, height) * 0.01))
|
94 |
-
|
95 |
-
if inout_scores is not None:
|
96 |
-
inout_score = inout_scores[i]
|
97 |
-
text = f"in-frame: {inout_score:.2f}"
|
98 |
-
text_width = draw.textlength(text)
|
99 |
-
text_height = int(height * 0.01)
|
100 |
-
text_x = xmin * width
|
101 |
-
text_y = ymax * height + text_height
|
102 |
-
draw.text((text_x, text_y), text, fill=color, font=ImageFont.load_default(size=int(min(width, height) * 0.05)))
|
103 |
-
|
104 |
-
if inout_scores is not None and inout_score > inout_thresh:
|
105 |
-
heatmap = heatmaps[i]
|
106 |
-
heatmap_np = heatmap.detach().cpu().numpy()
|
107 |
-
max_index = np.unravel_index(np.argmax(heatmap_np), heatmap_np.shape)
|
108 |
-
gaze_target_x = max_index[1] / heatmap_np.shape[1] * width
|
109 |
-
gaze_target_y = max_index[0] / heatmap_np.shape[0] * height
|
110 |
-
bbox_center_x = ((xmin + xmax) / 2) * width
|
111 |
-
bbox_center_y = ((ymin + ymax) / 2) * height
|
112 |
-
|
113 |
-
draw.ellipse([(gaze_target_x-5, gaze_target_y-5), (gaze_target_x+5, gaze_target_y+5)], fill=color, width=int(0.005*min(width, height)))
|
114 |
-
draw.line([(bbox_center_x, bbox_center_y), (gaze_target_x, gaze_target_y)], fill=color, width=int(0.005*min(width, height)))
|
115 |
-
|
116 |
-
return overlay_image
|
117 |
-
|
118 |
result_gazed = visualize_all(image, output['heatmap'][0], norm_bboxes[0], output['inout'][0] if output['inout'] is not None else None, inout_thresh=0.5)
|
119 |
|
120 |
return result_gazed, heatmap_results
|
|
|
17 |
model.eval()
|
18 |
model.to(device)
|
19 |
|
20 |
+
def visualize_heatmap(pil_image, heatmap, bbox=None, inout_score=None):
|
21 |
+
if isinstance(heatmap, torch.Tensor):
|
22 |
+
heatmap = heatmap.detach().cpu().numpy()
|
23 |
+
heatmap = Image.fromarray((heatmap * 255).astype(np.uint8)).resize(pil_image.size, Image.Resampling.BILINEAR)
|
24 |
+
heatmap = plt.cm.jet(np.array(heatmap) / 255.)
|
25 |
+
heatmap = (heatmap[:, :, :3] * 255).astype(np.uint8)
|
26 |
+
heatmap = Image.fromarray(heatmap).convert("RGBA")
|
27 |
+
heatmap.putalpha(90)
|
28 |
+
overlay_image = Image.alpha_composite(pil_image.convert("RGBA"), heatmap)
|
29 |
+
|
30 |
+
if bbox is not None:
|
31 |
+
width, height = pil_image.size
|
32 |
+
xmin, ymin, xmax, ymax = bbox
|
33 |
+
draw = ImageDraw.Draw(overlay_image)
|
34 |
+
draw.rectangle([xmin * width, ymin * height, xmax * width, ymax * height], outline="lime", width=int(min(width, height) * 0.01))
|
35 |
+
|
36 |
+
if inout_score is not None:
|
37 |
+
text = f"in-frame: {inout_score:.2f}"
|
38 |
+
text_width = draw.textlength(text)
|
39 |
+
text_height = int(height * 0.01)
|
40 |
+
text_x = xmin * width
|
41 |
+
text_y = ymax * height + text_height
|
42 |
+
draw.text((text_x, text_y), text, fill="lime", font=ImageFont.load_default(size=int(min(width, height) * 0.05)))
|
43 |
+
return overlay_image
|
44 |
+
|
45 |
+
def visualize_all(pil_image, heatmaps, bboxes, inout_scores, inout_thresh=0.5):
|
46 |
+
colors = ['lime', 'tomato', 'cyan', 'fuchsia', 'yellow']
|
47 |
+
overlay_image = pil_image.convert("RGBA")
|
48 |
+
draw = ImageDraw.Draw(overlay_image)
|
49 |
+
width, height = pil_image.size
|
50 |
+
|
51 |
+
for i in range(len(bboxes)):
|
52 |
+
bbox = bboxes[i]
|
53 |
+
xmin, ymin, xmax, ymax = bbox
|
54 |
+
color = colors[i % len(colors)]
|
55 |
+
draw.rectangle([xmin * width, ymin * height, xmax * width, ymax * height], outline=color, width=int(min(width, height) * 0.01))
|
56 |
+
|
57 |
+
if inout_scores is not None:
|
58 |
+
inout_score = inout_scores[i]
|
59 |
+
text = f"in-frame: {inout_score:.2f}"
|
60 |
+
text_width = draw.textlength(text)
|
61 |
+
text_height = int(height * 0.01)
|
62 |
+
text_x = xmin * width
|
63 |
+
text_y = ymax * height + text_height
|
64 |
+
draw.text((text_x, text_y), text, fill=color, font=ImageFont.load_default(size=int(min(width, height) * 0.05)))
|
65 |
+
|
66 |
+
if inout_scores is not None and inout_score > inout_thresh:
|
67 |
+
heatmap = heatmaps[i]
|
68 |
+
heatmap_np = heatmap.detach().cpu().numpy()
|
69 |
+
max_index = np.unravel_index(np.argmax(heatmap_np), heatmap_np.shape)
|
70 |
+
gaze_target_x = max_index[1] / heatmap_np.shape[1] * width
|
71 |
+
gaze_target_y = max_index[0] / heatmap_np.shape[0] * height
|
72 |
+
bbox_center_x = ((xmin + xmax) / 2) * width
|
73 |
+
bbox_center_y = ((ymin + ymax) / 2) * height
|
74 |
+
|
75 |
+
draw.ellipse([(gaze_target_x-5, gaze_target_y-5), (gaze_target_x+5, gaze_target_y+5)], fill=color, width=int(0.005*min(width, height)))
|
76 |
+
draw.line([(bbox_center_x, bbox_center_y), (gaze_target_x, gaze_target_y)], fill=color, width=int(0.005*min(width, height)))
|
77 |
+
|
78 |
+
return overlay_image
|
79 |
+
|
80 |
def main(image_input, progress=gr.Progress(track_tqdm=True)):
|
81 |
# load image
|
82 |
image = Image.open(image_input)
|
|
|
107 |
print(img1_person1_inout.item())
|
108 |
|
109 |
# visualize predicted gaze heatmap for each person and gaze in/out of frame score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
heatmap_results = []
|
111 |
for i in range(len(bboxes)):
|
112 |
+
overlay_img = visualize_heatmap(image, output['heatmap'][0][i], norm_bboxes[0][i], inout_score=output['inout'][0][i] if output['inout'] is not None else None)
|
113 |
heatmap_results.append(overlay_img)
|
114 |
|
115 |
# combined visualization with maximal gaze points for each person
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
result_gazed = visualize_all(image, output['heatmap'][0], norm_bboxes[0], output['inout'][0] if output['inout'] is not None else None, inout_thresh=0.5)
|
117 |
|
118 |
return result_gazed, heatmap_results
|