sohanAI's picture
Upload 7 files
78cabf4 verified
import os
import sys
import random
import torch
import pickle
import numpy as np
from PIL import Image
import torch.nn.functional as F
import gradio as gr
from omegaconf import OmegaConf
from scipy.stats import truncnorm
import subprocess
import traceback
import time
# Create a flag to track model loading status
models_loaded_successfully = False
# First run the download_models.py script if models haven't been downloaded
if not os.path.exists('data/state_epoch_1220.pth') or not os.path.exists('data/text_encoder200.pth') or not os.path.exists('data/captions_DAMSM.pickle'):
print("Downloading necessary model files...")
try:
subprocess.check_call([sys.executable, "download_models.py"])
except subprocess.CalledProcessError as e:
print(f"Error downloading models: {e}")
print("Please check the error message above. The application will attempt to continue with fallback settings.")
# Setup system paths
try:
# Add the code directory to the Python path
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "DF-GAN/code"))
# Import necessary modules from the DF-GAN code
from models.DAMSM import RNN_ENCODER
from models.GAN import NetG
except ImportError as e:
print(f"Error importing required modules: {e}")
print("The application may not function correctly.")
# Utility functions
def load_model_weights(model, weights, multi_gpus=False, train=False):
"""Load model weights with proper handling of module prefix"""
try:
if list(weights.keys())[0].find('module')==-1:
pretrained_with_multi_gpu = False
else:
pretrained_with_multi_gpu = True
if (multi_gpus==False) or (train==False):
if pretrained_with_multi_gpu:
state_dict = {
key[7:]: value
for key, value in weights.items()
}
else:
state_dict = weights
else:
state_dict = weights
model.load_state_dict(state_dict)
except Exception as e:
print(f"Error loading model weights: {e}")
print("Using model with random weights instead.")
return model
def get_tokenizer():
"""Get NLTK tokenizer"""
from nltk.tokenize import RegexpTokenizer
tokenizer = RegexpTokenizer(r'\w+')
return tokenizer
def truncated_noise(batch_size=1, dim_z=100, truncation=1.0, seed=None):
"""Generate truncated noise"""
state = None if seed is None else np.random.RandomState(seed)
values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state).astype(np.float32)
return truncation * values
def tokenize_and_build_captions(input_text, wordtoix):
"""Tokenize text and convert to indices using wordtoix mapping"""
tokenizer = get_tokenizer()
tokens = tokenizer.tokenize(input_text.lower())
cap = []
for t in tokens:
t = t.encode('ascii', 'ignore').decode('ascii')
if len(t) > 0 and t in wordtoix:
cap.append(wordtoix[t])
# Create padded array for the caption
max_len = 18 # As defined in the bird.yml
cap_array = np.zeros(max_len, dtype='int64')
cap_len = len(cap)
if cap_len <= max_len:
cap_array[:cap_len] = cap
else:
# Truncate if too long
cap_array = cap[:max_len]
cap_len = max_len
return cap_array, cap_len
def encode_caption(caption, caption_len, text_encoder, device):
"""Encode caption using text encoder"""
try:
with torch.no_grad():
caption = torch.tensor([caption]).to(device)
caption_len = torch.tensor([caption_len]).to(device)
hidden = text_encoder.init_hidden(1)
_, sent_emb = text_encoder(caption, caption_len, hidden)
return sent_emb
except Exception as e:
print(f"Error encoding caption: {e}")
# Return a random embedding as fallback
return torch.randn(1, 256).to(device)
def save_img(img_tensor):
"""Convert image tensor to PIL Image"""
try:
im = img_tensor.data.cpu().numpy()
# [-1, 1] --> [0, 255]
im = (im + 1.0) * 127.5
im = im.astype(np.uint8)
im = np.transpose(im, (1, 2, 0))
im = Image.fromarray(im)
return im
except Exception as e:
print(f"Error converting image tensor to PIL Image: {e}")
# Return a red placeholder image as fallback
return Image.new('RGB', (256, 256), color='red')
# Load configuration
config = {
'z_dim': 100,
'cond_dim': 256,
'imsize': 256,
'nf': 32,
'ch_size': 3,
'truncation': True,
'trunc_rate': 0.88,
}
# Determine device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Global variables for models
wordtoix = {}
ixtoword = {}
text_encoder = None
netG = None
models_loaded = False
# Load vocab and models
def load_models():
global wordtoix, ixtoword, text_encoder, netG, models_loaded, models_loaded_successfully
try:
# Load vocabulary
if os.path.exists('data/captions_DAMSM.pickle'):
with open('data/captions_DAMSM.pickle', 'rb') as f:
x = pickle.load(f)
wordtoix = x[3]
ixtoword = x[2]
del x
else:
print("Warning: captions_DAMSM.pickle not found. Using fallback vocabulary.")
# Fallback vocabulary
wordtoix = {"the": 1, "bird": 2, "is": 3, "a": 4, "with": 5, "and": 6, "red": 7, "black": 8, "yellow": 9}
ixtoword = {v: k for k, v in wordtoix.items()}
# Initialize text encoder
text_encoder = RNN_ENCODER(len(wordtoix), nhidden=config['cond_dim'])
text_encoder_path = 'data/text_encoder200.pth'
if os.path.exists(text_encoder_path):
state_dict = torch.load(text_encoder_path, map_location='cpu')
text_encoder = load_model_weights(text_encoder, state_dict)
else:
print("Warning: text_encoder200.pth not found. Using random weights.")
text_encoder.to(device)
for p in text_encoder.parameters():
p.requires_grad = False
text_encoder.eval()
# Initialize generator
netG = NetG(config['nf'], config['z_dim'], config['cond_dim'], config['imsize'], config['ch_size'])
netG_path = 'data/state_epoch_1220.pth'
if os.path.exists(netG_path):
state_dict = torch.load(netG_path, map_location='cpu')
if 'model' in state_dict and 'netG' in state_dict['model']:
netG = load_model_weights(netG, state_dict['model']['netG'])
models_loaded_successfully = True
else:
print("Warning: state_epoch_1220.pth has unexpected format. Using random weights.")
else:
print("Warning: state_epoch_1220.pth not found. Using random weights.")
netG.to(device)
netG.eval()
models_loaded = True
return wordtoix, ixtoword, text_encoder, netG
except Exception as e:
print(f"Error loading models: {e}")
traceback.print_exc()
print("Using fallback models instead.")
# Fallback vocabulary
wordtoix = {"the": 1, "bird": 2, "is": 3, "a": 4, "with": 5, "and": 6, "red": 7, "black": 8, "yellow": 9}
ixtoword = {v: k for k, v in wordtoix.items()}
# Create fallback models
try:
text_encoder = RNN_ENCODER(len(wordtoix), nhidden=config['cond_dim']).to(device)
netG = NetG(config['nf'], config['z_dim'], config['cond_dim'], config['imsize'], config['ch_size']).to(device)
models_loaded = False
except Exception as e2:
print(f"Failed to create fallback models: {e2}")
return wordtoix, ixtoword, text_encoder, netG
# Try to load the models
try:
wordtoix, ixtoword, text_encoder, netG = load_models()
except Exception as e:
print(f"Error during model loading: {e}")
print("The application will attempt to continue but may not function correctly.")
def generate_image(text_input, num_images=1, seed=None):
"""Generate images from text description"""
if not text_input.strip():
return [Image.new('RGB', (256, 256), color='lightgray')] * num_images
try:
cap_array, cap_len = tokenize_and_build_captions(text_input, wordtoix)
if cap_len == 0:
return [Image.new('RGB', (256, 256), color='red')] * num_images
sent_emb = encode_caption(cap_array, cap_len, text_encoder, device)
# Set random seed if provided
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# Generate multiple images if requested
result_images = []
with torch.no_grad():
for _ in range(num_images):
# Generate noise
if config['truncation']:
noise = truncated_noise(1, config['z_dim'], config['trunc_rate'])
noise = torch.tensor(noise, dtype=torch.float).to(device)
else:
noise = torch.randn(1, config['z_dim']).to(device)
# Generate image
try:
fake_img = netG(noise, sent_emb)
img = save_img(fake_img[0])
result_images.append(img)
except Exception as e:
print(f"Error generating image: {e}")
# Return a placeholder image as fallback
img = Image.new('RGB', (256, 256), color=(255, 200, 200))
result_images.append(img)
return result_images
except Exception as e:
print(f"Error in generate_image: {e}")
traceback.print_exc()
return [Image.new('RGB', (256, 256), color='orange')] * num_images
# Create a simple message for model loading status
model_status = "✅ Models loaded successfully" if models_loaded_successfully else "⚠️ Using fallback models - images may not look good"
# Function to render error page if needed
def serve_error_page():
if os.path.exists('error_page.html'):
with open('error_page.html', 'r') as f:
return f.read()
else:
return "<html><body><h1>Error loading models</h1><p>The application failed to load the required models.</p></body></html>"
# Create Gradio interface
def generate_images_interface(text, num_images, random_seed):
seed = int(random_seed) if random_seed and random_seed.strip().isdigit() else None
return generate_image(text, num_images, seed)
# Create the Gradio interface
with gr.Blocks(title="Bird Image Generator") as demo:
if models_loaded_successfully:
# Normal interface when models loaded successfully
gr.Markdown("# Bird Image Generator using DF-GAN")
gr.Markdown("Enter a description of a bird and the model will generate corresponding images.")
gr.Markdown(f"**Model Status:** {model_status}")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Bird Description",
placeholder="Enter a description of a bird (e.g., 'a small bird with a red head and black wings')",
lines=3
)
num_images = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Number of Images")
seed = gr.Textbox(label="Random Seed (optional)", placeholder="Leave empty for random results")
submit_btn = gr.Button("Generate Image")
with gr.Column():
image_output = gr.Gallery(label="Generated Images").style(grid=2, height="auto")
submit_btn.click(
fn=generate_images_interface,
inputs=[text_input, num_images, seed],
outputs=image_output
)
gr.Markdown("## Example Descriptions")
example_descriptions = [
"this bird has an orange bill, a white belly and white eyebrows",
"a small bird with a red head, breast, and belly and black wings",
"this bird is yellow with black and has a long, pointy beak",
"this bird is white in color, and has a orange beak"
]
gr.Examples(
examples=[[desc, 1, ""] for desc in example_descriptions],
inputs=[text_input, num_images, seed],
outputs=image_output,
fn=generate_images_interface
)
else:
# Modified interface with warning when models failed to load
gr.Markdown("# ⚠️ Bird Image Generator - Limited Functionality")
gr.Markdown("The pre-trained models could not be loaded correctly. The application will run with randomly initialized models.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Bird Description",
placeholder="Enter a description of a bird (e.g., 'a small bird with a red head and black wings')",
lines=3
)
num_images = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Number of Images")
seed = gr.Textbox(label="Random Seed (optional)", placeholder="Leave empty for random results")
submit_btn = gr.Button("Generate Image (Results will be random shapes)")
with gr.Column():
image_output = gr.Gallery(label="Generated Images (Random)").style(grid=2, height="auto")
submit_btn.click(
fn=generate_images_interface,
inputs=[text_input, num_images, seed],
outputs=image_output
)
gr.Markdown("""
### Model Loading Error
The application encountered an error while loading the pre-trained models. This could be due to:
1. Network connectivity issues
2. The model hosting service might be temporarily unavailable
3. The model files might have been moved or deleted
Please try refreshing the page or contact the Space owner if the issue persists.
""")
# Launch the app with appropriate configurations for Hugging Face Spaces
if __name__ == "__main__":
# Wait a moment before starting to make sure all logs are printed
time.sleep(1)
demo.launch(
server_name="0.0.0.0", # Bind to all network interfaces
share=False, # Don't use share links
favicon_path="https://raw.githubusercontent.com/tobran/DF-GAN/main/framework.png"
)