File size: 8,507 Bytes
76d118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import sys
import random
import torch
import pickle
import numpy as np
from PIL import Image
import torch.nn.functional as F
import gradio as gr
from omegaconf import OmegaConf
from scipy.stats import truncnorm
import subprocess

# First run the download_models.py script if models haven't been downloaded
if not os.path.exists('data/state_epoch_1220.pth') or not os.path.exists('data/text_encoder200.pth'):
    print("Downloading necessary model files...")
    try:
        subprocess.check_call([sys.executable, "download_models.py"])
    except subprocess.CalledProcessError as e:
        print(f"Error downloading models: {e}")
        print("Please run download_models.py manually before starting the app.")

# Add the code directory to the Python path
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "DF-GAN/code"))

# Import necessary modules from the DF-GAN code
from models.DAMSM import RNN_ENCODER
from models.GAN import NetG

# Utility functions
def load_model_weights(model, weights, multi_gpus=False, train=False):
    """Load model weights with proper handling of module prefix"""
    if list(weights.keys())[0].find('module')==-1:
        pretrained_with_multi_gpu = False
    else:
        pretrained_with_multi_gpu = True
    
    if (multi_gpus==False) or (train==False):
        if pretrained_with_multi_gpu:
            state_dict = {
                key[7:]: value
                for key, value in weights.items()
            }
        else:
            state_dict = weights
    else:
        state_dict = weights
    
    model.load_state_dict(state_dict)
    return model

def get_tokenizer():
    """Get NLTK tokenizer"""
    from nltk.tokenize import RegexpTokenizer
    tokenizer = RegexpTokenizer(r'\w+')
    return tokenizer

def truncated_noise(batch_size=1, dim_z=100, truncation=1.0, seed=None):
    """Generate truncated noise"""
    state = None if seed is None else np.random.RandomState(seed)
    values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state).astype(np.float32)
    return truncation * values

def tokenize_and_build_captions(input_text, wordtoix):
    """Tokenize text and convert to indices using wordtoix mapping"""
    tokenizer = get_tokenizer()
    tokens = tokenizer.tokenize(input_text.lower())
    cap = []
    for t in tokens:
        t = t.encode('ascii', 'ignore').decode('ascii')
        if len(t) > 0 and t in wordtoix:
            cap.append(wordtoix[t])
    
    # Create padded array for the caption
    max_len = 18  # As defined in the bird.yml
    cap_array = np.zeros(max_len, dtype='int64')
    cap_len = len(cap)
    if cap_len <= max_len:
        cap_array[:cap_len] = cap
    else:
        # Truncate if too long
        cap_array = cap[:max_len]
        cap_len = max_len
    
    return cap_array, cap_len

def encode_caption(caption, caption_len, text_encoder, device):
    """Encode caption using text encoder"""
    with torch.no_grad():
        caption = torch.tensor([caption]).to(device)
        caption_len = torch.tensor([caption_len]).to(device)
        hidden = text_encoder.init_hidden(1)
        _, sent_emb = text_encoder(caption, caption_len, hidden)
    return sent_emb

def save_img(img_tensor):
    """Convert image tensor to PIL Image"""
    im = img_tensor.data.cpu().numpy()
    # [-1, 1] --> [0, 255]
    im = (im + 1.0) * 127.5
    im = im.astype(np.uint8)
    im = np.transpose(im, (1, 2, 0))
    im = Image.fromarray(im)
    return im

# Load configuration
config = {
    'z_dim': 100,
    'cond_dim': 256,
    'imsize': 256,
    'nf': 32,
    'ch_size': 3,
    'truncation': True,
    'trunc_rate': 0.88,
}

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")

# Load vocab and models
def load_models():
    # Load vocabulary
    with open('data/captions_DAMSM.pickle', 'rb') as f:
        x = pickle.load(f)
        wordtoix = x[3]
        ixtoword = x[2]
        del x
    
    # Initialize text encoder
    text_encoder = RNN_ENCODER(len(wordtoix), nhidden=config['cond_dim'])
    text_encoder_path = 'data/text_encoder200.pth'
    state_dict = torch.load(text_encoder_path, map_location='cpu')
    text_encoder = load_model_weights(text_encoder, state_dict)
    text_encoder.to(device)
    for p in text_encoder.parameters():
        p.requires_grad = False
    text_encoder.eval()
    
    # Initialize generator
    netG = NetG(config['nf'], config['z_dim'], config['cond_dim'], config['imsize'], config['ch_size'])
    netG_path = 'data/state_epoch_1220.pth'
    state_dict = torch.load(netG_path, map_location='cpu')
    netG = load_model_weights(netG, state_dict['model']['netG'])
    netG.to(device)
    netG.eval()
    
    return wordtoix, ixtoword, text_encoder, netG

wordtoix, ixtoword, text_encoder, netG = load_models()

def generate_image(text_input, num_images=1, seed=None):
    """Generate images from text description"""
    if not text_input.strip():
        return [None] * num_images
    
    cap_array, cap_len = tokenize_and_build_captions(text_input, wordtoix)
    
    if cap_len == 0:
        return [Image.new('RGB', (256, 256), color='red')] * num_images
    
    sent_emb = encode_caption(cap_array, cap_len, text_encoder, device)
    
    # Set random seed if provided
    if seed is not None:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(seed)
    
    # Generate multiple images if requested
    result_images = []
    with torch.no_grad():
        for _ in range(num_images):
            # Generate noise
            if config['truncation']:
                noise = truncated_noise(1, config['z_dim'], config['trunc_rate'])
                noise = torch.tensor(noise, dtype=torch.float).to(device)
            else:
                noise = torch.randn(1, config['z_dim']).to(device)
            
            # Generate image
            fake_img = netG(noise, sent_emb)
            img = save_img(fake_img[0])
            result_images.append(img)
    
    return result_images

# Create Gradio interface
def generate_images_interface(text, num_images, random_seed):
    seed = int(random_seed) if random_seed else None
    return generate_image(text, num_images, seed)

with gr.Blocks(title="Bird Image Generator") as demo:
    gr.Markdown("# Bird Image Generator using DF-GAN")
    gr.Markdown("Enter a description of a bird and the model will generate corresponding images.")
    
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(
                label="Bird Description", 
                placeholder="Enter a description of a bird (e.g., 'a small bird with a red head and black wings')",
                lines=3
            )
            num_images = gr.Slider(minimum=1, maximum=4, value=1, step=1, label="Number of Images")
            seed = gr.Textbox(label="Random Seed (optional)", placeholder="Leave empty for random results")
            submit_btn = gr.Button("Generate Image")
        
        with gr.Column():
            image_output = gr.Gallery(label="Generated Images").style(grid=2, height="auto")
    
    submit_btn.click(
        fn=generate_images_interface,
        inputs=[text_input, num_images, seed],
        outputs=image_output
    )
    
    gr.Markdown("## Example Descriptions")
    example_descriptions = [
        "this bird has an orange bill, a white belly and white eyebrows",
        "a small bird with a red head, breast, and belly and black wings",
        "this bird is yellow with black and has a long, pointy beak",
        "this bird is white in color, and has a orange beak"
    ]
    
    gr.Examples(
        examples=[[desc, 1, ""] for desc in example_descriptions],
        inputs=[text_input, num_images, seed],
        outputs=image_output,
        fn=generate_images_interface
    )

# Launch the app with appropriate configurations for Hugging Face Spaces
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",  # Bind to all network interfaces
        share=False,            # Don't use share links
        favicon_path="https://raw.githubusercontent.com/tobran/DF-GAN/main/framework.png"
    )